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We derive the Joule expansion of an isolated perfect gas from the principles of quantum mechanics.
Contrary to most studies of irreversible processes which consider composite systems, the interesting and
ignored degrees of freedom are here described by operators acting in the same many-body Hilbert space.
Moreover, the expansion of the gas into the entire accessible volume is obtained for pure states. Still, the
number particle density is characterized by a chemical potential and a temperature. We discuss the special
case of a boson gas below the Bose condensation temperature.
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Irreversible processes can be described within the
framework of quantum mechanics by taking into account
a large amount of degrees of freedom. A small number of
these degrees of freedom are involved in the considered
process and the other ones are ignored. Most of the studies
are concerned with composite systems consisting of a
subsystem of interest coupled to one or several large res-
ervoirs. For example, the decoherence and relaxation into
thermal equilibrium of a quantum system is obtained by
coupling it to a large heat bath [1]. In the context of
transport, the quantum conductor under study is main-
tained out of equilibrium by connecting it to large free
particle reservoirs [2]. The interesting physics occurs gen-
erally in the subsystem and the reservoirs’ degrees of
freedom are traced out [3]. The reservoirs are assumed
large enough so that their states remain essentially un-
changed during the studied process. It seems natural then
to suppose that they are initially at thermal equilibrium.

It is often argued that the equilibrium states of the
reservoirs result from their coupling to a thermal super-
reservoir which is not taken into account explicitly in the
model. Recently, it has been shown that such an ad hoc
assumption is actually not necessary to understand the
relaxation of a quantum system into thermal equilibrium
[4–7]. It has been found that a boson bath initially in a pure
state of macroscopically well-defined energy can induce
this relaxation [7]. The thermalization process has thus
been obtained as a consequence of the pure quantum-
mechanical description of a truly isolated composite sys-
tem. In this approach, the temperature of the asymptotic
equilibrium state of the interesting subsystem is not intro-
duced by hand by thermal averaging over the bath initial
states. It is determined by the density of states of the bath
and the macroscopic energy of its initial pure state.

In this Letter, we consider an isolated perfect quantum
gas confined in a finite region of space. The gas particles do
not interact with each other or with environmental degrees
of freedom; they are only subject to a static confining
potential. We show that the textbook example of an irre-
versible process, the Joule expansion, is a direct conse-

quence of the quantum mechanics principles. More
precisely, we study the time evolution of the number
particle density ensuing from an initial pure many-body
state situated in a subregion of the total accessible volume.
Following Refs. [5–7], we consider pure states of macro-
scopically well-defined energy. Contrary to the usually
studied case of composite systems, the interesting and
ignored degrees of freedom are here part of the same
many-body system. However, we obtain, in the thermody-
namic limit, a clear expansion of the gas into the entire
accessible region for times much shorter than the Poincaré
recurrence time of the system.

To simplify, we first restrict ourselves to the case of a
one-dimensional perfect gas in an infinite square well
potential of width L. The N indistinguishable particles,
bosons or fermions, of mass m constituting the gas are
described by the Hamiltonian

 HL � �
1

2m

Z L

0
dx y�x�@2

x �
X
k>0

k2

2m
cyk ck; (1)

where  y�x� and cyk create, respectively, a particle at
position x and in the single-particle eigenfunction
�2=L�1=2 sin�kx�. The sum runs over the wave vectors k �
n�=L where n is a positive integer. We use units in which
@ � kB � 1. In the following, we study the particle number
density of the gas which can be written as

 ��x; t� �
X
k

eikxh�̂k�t�i; (2)

where the sum runs over both positive and negative wave
vectors k and h� � �i denotes the average with respect to the
initial gas state j i. The operators �̂k are given by

 �̂ k�t� �
1

2L

X
k0�0;k

eik�2k
0�k�t=2m~cyk0~ck0�k; (3)

where ~ck � sgn�k�cjkj. We remark that �̂yk � �̂�k � �̂k
and h�̂0�t�i � N=L for any state j i.
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We assume that initially the N particles are confined in
an interval �0; ‘� where ‘ < L, and that j i is a state of
macroscopically well-defined energy E. We are interested
in the subsequent evolution of the density (2) in the ther-
modynamic limit N � 1 with finite mean distance ‘=N
and energy E=N. The initial gas state reads

 j i �
X

j�i2H E

 �j�i; (4)

where j�i refers to the N-particle eigenstates of the
Hamiltonian H‘ given by (1) with the upper limit L re-
placed by ‘. The wave vectors of the corresponding eigen-
modes �2=‘�1=2 sin�qx� are denoted by q � n�=‘ where n
is a positive integer. An eigenstate j�i corresponds to a set
of occupation numbers fnqg obeying

P
q>0nq � N. For

fermions, nq is restricted to the values 0 and 1. The
Hilbert space H E is spanned by the states j�i satisfying
E<

P
q>0nqq

2=2m<E	 �E where �E is much smaller
than E but much larger than the maximum level spacing of
H‘. In the thermodynamic limit, the dimensionD of H E is
practically proportional to �E and a density of states
n�E;N� � D=�E can be defined. Moreover, this density
satisfies Boltzmann’s relation

 ln�n�E;N��E� ’ Ns
�
E
N
;
‘
N

�
; (5)

where s � S=N is the gas entropy per particle. As is well
known, for a perfect gas, the relation (5) is a direct con-
sequence of the exchange symmetry principle [8].

We now show that, in the thermodynamic limit, almost
all normalized states (4) lead to the same particle number
density. To obtain this result we use, following Refs. [5–7],
the uniform measure on the unit sphere in H E

 ��f �g� �
�D� 1�!

�D
�
�
1�

X
j�i2H E

j �j2
�
: (6)

More precisely, we will evaluate the Hilbert space average
and variance of h�̂k�t�i following from this normalized
distribution. To do so, we note that, in the limit N � 1,
the reduced distribution of a finite number q of components
 ��1�; . . . ;  ��q� equals

Qq
p�1 D exp��Dj ��p�j

2�=�. With
this Gaussian distribution, we obtain the Hilbert space
average

 h�̂k�t�i �
ei�kt

2LD

X
jfnqgi2H E

X
k0;q>0

e�ikk
0t=m�qjk0��qjk0 � k�nq;

(7)

where �qjk� � 2�L‘��1=2
R
‘
0 dx sin�qx� sin�kx� and �k �

k2=2m. This expression simply states that the Hilbert space
average of the expectation value h�̂ki is equal to the micro-
canonical average at energy E of the operator �̂k. It can be
further simplified using the following standard arguments
[8]. The microcanonical probability distribution of the
occupation number nq is P�nq� � n̂�E� nq�q; N �

nq�=n�E;N� where �q � q2=2m and n̂ is the density of
states of the Hamiltonian H‘ � �qc

y
qcq. This density obeys

Boltzmann’s relation (5) with the corresponding entropy ŝ.
Expanding this entropy in the energy nq�q 
 E and num-
ber nq 
 N and taking into account that ŝ � s in the
thermodynamic limit result in P�nq� / exp��nq��q �
��=T� where T and � are given by

 

1

T
� @ES�E;N�;

�
T
� �@NS�E;N�: (8)

Consequently, the microcanonical average numbers in (7)
can be replaced by the Bose-Eintein or Fermi-Dirac occu-
pation function at the microcanonical temperature T and
chemical potential � determined by the intensive parame-
ters E=N and ‘=N of the many-body state (4).

We define the Hilbert space variance �2 of h�̂ki as the
average of jh�̂ki � h�̂kij

2 with respect to the measure (6).
We find

 �2 �
1

D2

X
j�i;j�i2H E

jh�j�̂k�t�j�ij
2 <

1

D
h�̂k�t�

2iE; (9)

where hAiE �
P
j�i2H E

h�jAj�i=D denotes the microca-
nonical average at energy E of the observable A. The upper
bound is simply obtained by replacing the sum over the
states j�i 2H E by a sum over all the N-particle eigen-
states j�i of the Hamiltonian H‘. From the above argu-
ments, one finds that the microcanonical distribution of
two eigenmode occupation numbers is P�nq�P�nq0 � with T
and � given by (8). As a consequence, the microcanonical
average on the right-hand side of the inequality (9) is equal
to a finite grand-canonical average and hence, as D�
exp�N�, the variance �2 vanishes exponentially in the
thermodynamic limit. Therefore, for almost all states (4),
the particle number density is given by (2) with the Fourier
coefficients

 h�̂k�t�i �
ei�kt

2L

X
k0;q>0

�qjk0��qjk0 � k�f�q�e�ikk
0t=m; (10)

where f�q� � �exp�q2=2mT ��=T� � 1��1 depending on
the bosonic or fermionic nature of the particles. To de-
scribe a gas state of macroscopic energy E, other choices
than (4) are possible. For example, due to the exponential
N dependence (5) of the density n�E;N�, one obtains the
result (10) for almost all states of the Hilbert space spanned
by the eigenstates jfnqgi satisfying

P
qnq � N andP

qnq�q < E. We also remark that the above derivation is
not restricted to the observables �̂k. The result (10) can be
generalized to any n-particle observables for n
 N. The
expression (10) holds for higher-dimensional systems, pro-
vided that the confining potential is independent of x 2
�0; L�. More precisely, the number of particles ��x�dx
between x and x	 dx evolves according to (10) with f
replaced by a sum over transverse eigenmodes. We con-
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sider the case of macroscopic transverse dimensions to-
wards the end of the Letter.

We now discuss the time evolution of the density �. For
that purpose, it is useful, using the properties of the Dirac
comb function [9], to rewrite (10) as
 

h�̂k�t�i �
ei�kt

4�L

X
n;p

Z ‘

�‘
dx
Z ‘

�‘
dx0�

�
x� x0 	

kt
m
	 2nL

�

 eikx
X
	��1

	F�x� 	x0 	 2p‘�; (11)

where F�x� �
R
dqeiqxf�q� is the Fourier transform of the

grand-canonical occupation function f. The function F
does not depend explicitly on the length ‘, it depends
only on the intensive parameters E=N and ‘=N via the
definitions (8). It assumes its maximum value 2�N=‘ at
x � 0 and vanishes for large x. As an example, consider the
classical Maxwell-Boltzmann limit, �
 ‘=N where � �
��N=Em�1=2 is the de Broglie thermal wavelength (E �
NT=2 here), where F�x� / exp���x2=�2�. The expres-
sion (11) clearly shows that h�̂ki is periodic with period
tk � 4Lm=k and h�̂k�tk=2�i � �h�̂k�0�i depending on the
parity of kL=�. Consequently, the density � is periodic
with period 4mL2=� and ��x; 2mL2=�� � ��L� x; 0�.
Times of the order of mL2 are practically inaccessible.
For example, for He atoms and a length L ’ 10 cm, the
time period of the particle number density is of the order of
a few days.

The gas expansion is described by the relaxation, for
times t
 mL2, of the Fourier coefficients h�̂k�t�i corre-
sponding to wavelengths of the order of the box length L.
For these times and wavelengths, we obtain

 h�̂k�t�i ’
sin�k‘�
2�kL

F
�
kt
m

�
; (12)

up to a correction of order L�1. The macroscopic wave-
length components of the density � are of order unity at
initial time and then relax according to (12). The gas
evolution is hence essentially an expansion into the entire
accessible volume, as illustrated by Fig. 1. This figure
clearly shows that this evolution is very different from
that of a single particle [10]. The results displayed in
Figs. 1 and 2 are obtained by numerical evaluation of the
sum (10). We remark that in the Maxwell-Boltzmann limit,
the gas expansion described by (12) is characterized by an
@-independent time of the order of L�m=kBT�1=2 as ex-
pected from classical physics dimensional considerations.
In the example already mentioned of He atoms in a box of
10 cm length, this time is of the order of 0.1 ms at T �
300 K and is thus far much shorter than mL2.

Interestingly, the macroscopic wavelength approxima-
tion (12) can be interpreted in quasiclassical terms as
follows. The number particle density resulting from
this approximation can be written as an integral over p of
the distribution w�x; p; t� � f�p�

P
n�‘�x� pt=m	

2nL�=2� where �‘�x� � 1 for jxj< ‘ and 0 otherwise.

This probability density describes classical particles which
are initially distributed uniformly in the subbox �0; ‘� with
momenta p distributed according to the grand-canonical
occupation function and which evolve freely between per-
fectly elastic collisions with the walls of the container
�0; L� [11]. The gas expansion given by (12) can be char-
acterized by the time evolution of the particle current
J�t� � �@t

R
‘
0 dx��x; t�. For short times, J is constant

and equal to the Landauer current [12] JL �R
1
�� d�=2��exp��=T� � 1� flowing through a perfect con-

ductor from a reservoir at thermal equilibrium, the interval
�0; ‘�, to an empty reservoir, the interval �‘; L�; see Fig. 2.
For longer times, the density � and hence the current J are
well approximated by the longest wavelength terms of (2);
see Figs. 1 and 2. Finally, the current J essentially vanishes.
The long-time expansion is similar for periodic boundary
conditions but with a symmetry plane at ‘=2.

Contrary to the quasiclassical approximation (12), the
quantum number particle density determined by (10) does
not relax into a steady state. As h�̂ki is time periodic with
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FIG. 1. Particle number density as a function of space for
‘=L � 0:345 67 and times t=mL2 � 0, 5 10�4, and 0.1 for
(a) a 1D fermion gas at T � 105=m‘2 and exp��=T� � 0:1, (b) a
3D boson gas at T � 0 or, equivalently, a single particle initially
in the ground state of the subbox �0; ‘�. In this last case, the first
two curves cannot be distinguished.
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period tk � 4Lm=k, the density � fluctuates constantly,
even in the Maxwell-Boltzmann limit. For the sake of
clarity, we discuss this limit and a length L> 2‘. From
(11), we deduce that jh�̂k�t�ij is even and periodic with
period tk=2. Moreover, we find, for 0< t < tk=4,
jh�̂k�t�ij ’ f�k=2�=4L for t=tk < ‘=2L and 0 elsewhere,
provided that t=tk; jt=tk � ‘=2Lj � �=L where � is the
de Broglie thermal wavelength. To show that the micro-
scopic fluctuations of the density ��x; t� do not disappear in
the thermodynamic limit, we consider

 M�t� �
Z L

0
dx
�
��x; t� �

N
L

�
2
� L

X
k�0

jh�̂k�t�ij
2; (13)

which is a global measure of the difference between � and
the uniform density N=L. The distance M decreases from
the extensive value M�0� ’ �L=‘� 1�N2=L to finite values
for t� mL�. For these times, all the Fourier components
jh�̂kij are of the order of L�1, and M can be written as an
integral over k on the intervals �2m�pL� ‘�=t; 2m�pL	
‘�=t� where p is an integer. Consequently, the function
��x; t� � N=L is nonvanishing in finite size regions, see
Fig. 1, and changes with a characteristic time of the order
of mL�.

We finally discuss the case of a gas in a tridimensionnal
box of length L and rectangular cross- section S� L2

initially confined in a subvolume V � S‘ between x � 0
and x � ‘. The main difference with the unidimensional
system is that here, for bosons, the average occupation
number N0 of the subbox V lowest eigenmode is macro-
scopic for E below the Bose condensation energy EB /
N�N=V�2=3=m [8]. We note that, in this case, the micro-
canonical probability distribution of this occupation num-
ber is not of the grand-canonical form [13]. Whereas one
eigenmode can be macroscopically populated here, the
result � � �� remains valid since the dimension D in (9)
grows exponentially with N. For fermions and for bosons

with E> EB, the gas expands according to (11) with F
replaced by F3D�x� � S

R
dqq sin�qx�f�q�=2�x. For bo-

sons with E< EB, the density � � �BEC 	 �JE is the
sum of two contributions corresponding, respectively, to
the condensed and noncondensed bosons. The contribution
�JE is the zero chemical potential limit of the above case.
The other contribution is very different since �BEC�x; t�
equals N0 times a single-particle position probability den-
sity; see Fig. 1. Therefore, though we consider pure states,
the behavior of the boson gas is radically different below
and above the Bose condensation temperature TB / EB=N.

In conclusion, we have obtained an irreversible evolu-
tion of physically relevant degrees of freedom of a many-
body system without any coupling to environmental de-
grees of freedom. More precisely, we have shown that an
isolated quantum perfect gas confined in a finite region of
space tends to fill uniformly the total accessible volume,
with the noticeable exception of the low energy 3D Bose
gas. Moreover, whereas we consider pure gas states, the
gas expansion is characterized by a chemical potential and
a temperature and is well described by the Landauer for-
mula for short times. It would be interesting to study the
influence of interactions between the particles and with an
environment. For a weak coupling to an environment, the
behavior of the number particle density should be well
described by our results for short enough times. The
particle-particle interactions could induce a complete re-
laxation of the single-particle density matrix into a grand-
canonical equilibrium state.

We thank R. Chitra for helpful discussions and a careful
reading of the manuscript.
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FIG. 2. Particle current J as a function of time for fermions, a
fugacity of 0.1, T � 105=m‘2, and ‘ � 0:345 67L. The dotted
line and dashed line are, respectively, the Landauer current and
the contribution of the wave vector k � �=L.
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