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An optical analogue of a quantum particle bouncing on a hard surface under the influence of gravity (a

quantum bouncer) is experimentally demonstrated using a circularly curved optical waveguide. Spatially

resolved tunneling optical microscopy measurements of multiple beam reflections at the waveguide edge

clearly show the appearance of wave packet collapses and revivals (either integer and fractional),

corresponding to the full quantum regime of the quantum bouncer.
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The motion of a quantum particle falling in a constant
gravitational field, eventually reflected by a hard surface, is
of great relevance in different areas of physics [1–11],
mainly because of the possibility of observing quantum
effects of gravity [10], testing the equivalence principle
[9], and observing freely accelerating particles (Airy wave
packets [4,12]). Experimental realizations of a quantum
bouncer, i.e., of a quantum particle bouncing on a hard
surface under the influence of gravity [1,2], have been
reported using ultracold atoms [5–8] and neutrons [10].
Owing to the formation of a gravitational quantum well
[1,2], the energy levels of the bouncing atoms or neutrons
are quantized. Since the gravitational well is anharmonic,
the quantum motion of an initially localized particle
strongly deviates from the classical one at long observation
times, and in the full quantum regime wave packet collap-
ses and revivals should be observed as a result of quantum
interference [13]. Unfortunately, the energy levels in a
gravitational well are very closely spaced, making the
classical limit ubiquitous in most practical cases and quan-
tum interference effects hardly observable. Similarly,
preparation of a quantum particle in a stationary Airy
eigenstate, which is perceived as a freely accelerating
particle [12] by a free-falling observer [4], remains to
date out of a realistic realization in the quantum realm.
Since these effects are in their essence a manifestation of
the wave nature of matter and because of the similarity
between quantum and classical interference [14], they can
be observed as well for classical waves, such as optical or
acoustical waves. Exploitation of the optical-mechanical
analogy has enabled recently the first experimental dem-
onstration of freely accelerating Airy wave packets for
light [15], with interesting applications to optical micro-
manipulation [16]. Several optical analogues of quantum
bouncers have been proposed as well [17–21]. Earlier
experiments [17,18] showed light bouncing in inhomoge-
neous dielectric media and explained the observed light
paths by the Hamiltonian analogy between classical me-

chanics and ray optics [18]. However, in such realizations
the full wave regime, leading to beam collapses and re-
vivals, was not accessible. Other proposals of photonic
bouncers have been theoretically discussed both in the
spatial [19,20] and temporal [21] domains. In the former
case, a light beam is accelerated by an effective refractive
index gradient produced, for instance, by carrier diffusion
effects in photorefrative media [19] or by waveguide bend-
ing [20]. In the temporal domain, dispersive light waves in
photonic crystal are trapped in a gravitylike potential cre-
ated by accelerating solitons, and thus behave like a quan-
tum bouncing ball [21].
In this Letter we report on the experimental demonstra-

tion of a photon bouncer (i.e., an optical analogue of a
quantum bouncing ball) in the full wave regime, with a
quantitative analysis of collapse and revival effects based
on accurate scanning tunneling optical microscopy
measurements.
Our optical analogue of the quantum bouncer is based on

trapping of a light beam near the outer edge of a circularly
curved wide channel waveguide of radius R and channel
size a, as schematically shown in Fig. 1(a). A light beam
injected near the outer edge of the waveguide undergoes a
sequence of bounces due to total internal reflection, which
mimics the motion of a quantum bouncing ball. As op-
posed to previous realizations of photon bouncers [17,18],
in our experiment the beam is launched very close to the
waveguide edge to enable the observation of wave packet
collapses and revivals over propagation distances shorter
than the perimeter �R of the semicircular waveguide. The
trapping mechanism of light near the waveguide edge
relies on the existence of Airy bound states similar to the
whispering gallery waves found in spherical or toroidal
microresonators [22]. In the curvilinear reference frame (u,
v) shown in Fig. 1(a), which is related to the physical (x, z)
frame by a conformal mapping [23], propagation of a
monochromatic and scalar light beam at wavelength �,
localized near the outer boundary u� 0 of the waveguide
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at a distance much smaller than R, is described by the
following effective wave equation [20]:

i�
@c

@v
¼ � �2

2ns

@2c

@u2
þ VðuÞc � H c ; (1)

where c ðu; vÞ is the complex electric field envelope, ns is
the substrate refractive index, � ¼ �=ð2�Þ is the reduced
wavelength, VðuÞ ¼ ns � nðuÞ þ nsu=R, and nðuÞ is the
effective refractive index profile of the straight channel
waveguide. The analogy between our optical bouncer and
the quantum bouncer [1,2] stems from the similarity be-
tween Eq. (1) and the Schrödinger equation of a nonrela-
tivistic quantum particle of mass ns in a potential VðuÞ,
where the Planck constant h is replaced by the wavelength
� of photons and the temporal variable of the quantum
problem is mapped into the curvilinear spatial propagation
coordinate v. Note that, near u ¼ 0, the potential VðuÞ
behaves like a gravitational well, in which the hard surface
is provided by the outer waveguide edge whereas the
gravitational potential is played by the fictitious transverse
refractive index gradient perceived by light in the curved
reference frame.

For the experiment, we manufactured a semicircular
channel waveguide (radius of curvature R ¼ 19:8 mm,
channel size a ¼ 200 �m) in a passive phosphate glass
by the Ag-Na ion-exchange technique (see, for instance,
Ref. [24]). The behavior of the effective one-dimensional
potential well VðuÞ, estimated following a procedure simi-

lar to that detailed in [24], is depicted in Fig. 1(b). In the
figure, the numerically computed (dimensionless) energy
eigenvalues En and corresponding eigenstates�nðuÞ of the
well [i.e., H�nðuÞ ¼ En�nðuÞ] are also shown. Note that
the optical well exhibits a smooth profile at the edge of the
waveguide, and a finite number (�10) of trapped modes
exist owing to the finite refractive index difference between
cladding and core waveguide regions. Nevertheless, pro-
vided that the low-order trapped modes are excited, our
optical system closely mimics the problem of a particle
bouncing on a perfectly reflecting surface under the influ-
ence of gravity, and each eigenstate �nðuÞ closely resem-
bles the set of shifted Airy functions found in the quantum
bouncer problem [2]. Wave packet excitation at the input
plane v ¼ 0 is accomplished by a narrow straight wave-
guide, which is displaced by d ’ 30 �m from the outer
edge of the wider circular waveguide [Fig. 1(a)]. The
narrow waveguide is excited by bonding its input facet
with the single-mode optical fiber of a fiber pigtailed laser
diode operating at � ¼ 980 nm (see Fig. 2). The bonding
system ensures an excellent long-term stability of the
excitation setup, avoiding even small fluctuations of the
coupled light mode that might be detrimental for an accu-
rate and quantitative mapping of the light flow along the
waveguide. The wave packet c ðu; 0Þ at the entrance plane,
whose measured intensity profile is well fitted by a
Gaussian function with a full width at 1=e2 of �9:5 �m,
excites a few eigenstates �nðuÞ of the optical well with an
estimated spectrum jcnj2 centered at around n0 ¼ 4 as
shown in Fig. 1(c), where cn ¼

R
du�nðuÞc ðu; 0Þ. For

the chosen values of R and d, the beam makes about N ¼
�R=D� 28 classical bounces over the full curved wave-
guide path, where D ¼ 2R arccosð1� d=RÞ � 2:2 mm is
the curvilinear length between successive bounces calcu-
lated by a simple ray optics analysis [cf. Fig. 1(a)]. To
study wave packet collapse and revival phenomena, let us
expand the eigenvalues En at around n ¼ n0 up to second
order; the propagated wave packet c ðu; vÞ at the arc length
v is then given by

FIG. 2 (color online). Experimental setup for quantitative
mapping of light flow along the photonic structure of Fig. 1(a)
employing scanning tunneling optical microscopy.

FIG. 1 (color online). (a) Schematic of the photonic structure
designed to mimic a photon bouncing ball. (b) Effective one-
dimensional potential well VðuÞ. Numerically computed energy
eigenvalues En and corresponding eigenstates �nðuÞ of the well
are also shown. (c) Wave packet spectrum jcnj2 for an initial
Gaussian wave packet. Energy spectrum of the Hamiltonian H
is also shown.
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c ðu; vÞ ¼ exp

�
�i

En0v

�

� X
l¼0;�1;...

cn0þl�n0þlðuÞ

� exp½�2�ivðl=T1 þ l2=T2Þ�; (2)

where the spatial scales T1 and T2 are defined by

T1 ¼ 2��=ðdEn=dnÞn0 ; T2 ¼ 4��=ðd2En=dn
2Þn0 :

(3)

For the spectrum shown in Fig. 1(c), at � ¼ 980 nm one
obtains T1 ’ 2:3 mm and T2 ’ 49 mm; i.e., the two spatial
scales are well separated. The beam evolution over the
shortest spatial scale �T1 reproduces the classical (ray
optics) result. Here, the quadratic term in l entering in
the exponent on the right-hand side of Eq. (2) can be
neglected, and the wave packet undergoes a periodic mo-
tion with a spatial periodicity T1 very close to the classical
bouncing period D ’ 2:2 mm predicted by the ray optics
analysis (semiclassical regime). In this regime, c ðu; vÞ ’
c clðu; vÞ, where c clðu; vÞ is the ‘‘classical’’ component of
the wave packet [13] which is obtained by letting T2 ! 1
in Eq. (2). The time scale T2 at the next order in the
expansion is analogous to the quantum revival time scale
of the quantum bouncer, and it is responsible for the
appearance of collapsed and revival states for propagation
distances in the spatial scale T2 [2,13]. In particular, when
v varies near v ’ T2=2, the quadratic phase term in Eq. (2)
is close to �l2=2, and one has jc ðu; vÞj2 ’ jc clðu; v�
T1=2Þj2; i.e., the semiclassical wave dynamics is retrieved;
however, the motion is out of phase as compared to the
classical prediction by half a period. This corresponds to a
fractional revival of the input wave packet. Similarly, at
v ’ T2, one obtains jc ðu; vÞj2 � jc clðu; vÞj2; i.e., the clas-
sical bouncing motion is retrieved (first integer revival).
Between subsequent revivals, a collapsed state, corre-
sponding to a kind of ‘‘incoherent’’ superposition of the
various wave packet components and leading to a fully
delocalized field over a distance d from the waveguide
boundary, is expected on the basis of general considera-
tions [13]. The propagation distances at which the col-
lapsed states occur depend on the precise shape of the
input beam, and can be determined by direct numerical
analysis of beam propagation.

A quantitative mapping of the light flow along the outer
edge of the waveguide is accomplished by means of scan-
ning tunneling optical microscopy imaging with a com-
mercially available microscope setup employing a hollow-
pyramid cantilevered tip (Fig. 2). The tip is brought to soft
contact with the waveguide and converts the evanescent
field at the upper surface of the sample into a propagating
wave, which is then focused onto a pinhole for background
rejection, followed by a single-photon avalanche detector.
Such a technique has been previously demonstrated to be a
reliable mean for high-spatial resolution measurement of
intensity field distributions at the surface of evanescently

coupled optical waveguides [25], and recently it led to the
experimental demonstration of the optical Zeno effect [26].
Maps of light intensity distributions are then retrieved

following the procedure detailed in [25], and analyzed to
reconstruct the evolution of beam center of mass hui ¼R
ujc ðu; vÞj2du versus curvilinear propagation distance v.

Figures 3(a) and 3(b) respectively show the measured
evolution of the beam center of mass and corresponding
theoretical behavior obtained by a standard numerical
analysis of Eq. (1) based on pseudospectral methods. The
classical paraboliclike trajectory of the beam undergoing
successive bounces, expected by a ray optics analysis (the
classical limit of the quantum bouncer), is also depicted in
the figures with a dotted line. An inspection of the data
clearly reveals the appearance of wave packet collapses
and revivals. At short propagation distances (v & 10 mm),
the beam trajectory follows the classical (ray optics)
path, and undergoes successive bounces like a ball bounc-
ing on a hard surface under gravity. This is clearly shown in
Fig. 4(a), where the detailed behavior of the light intensity
map jc ðu; vÞj2 for the first two bounces (near v ¼ 0) is
reported. At v ¼ v1 � 14 mm, a first collapse of the wave
packet is clearly observed (Fig. 3). In this region, the light
beam turns out to be fully delocalized over a distance d
from the boundary, as shown in Fig. 4(b). At the longer
propagation distance v ¼ v2 � 22 mm, i.e., close to
�T2=2, a first revival of the wave packet is observed [see
Fig. 4(c)].
Note that the center of mass of the wave packet turns out

to be out of phase as compared to the classical trajectory
(see also Fig. 3), a clear signature that at v� v2 a frac-
tional revival is observed. This revival is followed by a
second collapse, and then by the first integer revival [see

FIG. 3 (color online). (a) Experimental and (b) numerically
computed beam center of mass of the photon bouncing ball
versus the curvilinear propagation distance v. Classical trajec-
tory (dotted line) is also shown for comparison.
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Fig. 4(d)], which occurs at around v� T2 according to
theory.

In conclusion, an optical analogue of a quantum bouncer
has been realized based on light propagation near the edge
of a circularly curved optical waveguide. Quantitative
mapping of light bouncing by scanning tunneling optical
microscopy measurements enables the visualization of the
transition from classical (ray optics) to full wave (beam
collapse and revival) regimes, which is currently not ac-
cessible for matter quantum bouncers.

We gratefully acknowledge M. Scarparo for his techni-
cal assistance during the experimental sessions.
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FIG. 4 (color online). Measured (left panels) and numerically
computed (right panels) light intensity map jc ðu; vÞj2 during
(a) the first two bounces, (b) the first collapse, (c) the fractional
revival, and (d) the first integer revival. The dashed line in (a),
(c), and (d) is the classical trajectory.
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