Rejoinder on "Conjectures on exact solution of three-dimensional (3D) simple orthorhombic Ising lattices"*

Jacques H.H. Perk[†]

145 Physical Sciences, Oklahoma State University, Stillwater, OK 74078-3072, USA[‡]

and

Department of Theoretical Physics, (RSPE), and Centre for Mathematics and its Applications (CMA), Australian National University, Canberra, ACT 2600, Australia

January 19, 2009

Abstract

It is shown that the arguments in the reply of Z.-D. Zhang defending his conjectures are invalid. His conjectures have been thoroughly disproved.

After all the discussion about his paper [1, 2, 3, 4, 5], Zhang seems to have only one real issue left with the two comments [2, 5], still wrongly believing [6] that the free energy of the three-dimensional Ising model is not analytic at $\beta \equiv 1/(k_{\rm B}T) = 0$, H = 0. His further arguments are irrelevant or dealt with adequately in [2, 5].

^{*}Supported by NSF grantPHY 07-58139

[†]Email: perk@okstate.edu

[‡]Permanent address

His objection that Gallavotti and Miracle-Solé set $\beta = 1$ is not valid. One often uses dimensionless parameters $K_i = \beta J_i$, (i = 1, 2, 3), $h = \beta H$. Equivalently, one can absorb the β into the coupling constants, setting $\beta = 1$, so that $K_i \equiv J_i$, $h \equiv H$. Infinite temperature is then the limit $K_i \to 0$, $h \to 0$, such that all ratios are kept fixed.¹

His point on [7] is also not valid. Writing $z \equiv \exp(-2\beta H)$, see eq. (23) of [7], and keeping βH fixed in the limit $\beta \to 0$, the Ising model partition function on an arbitrary lattice with N sites becomes $Z = (z^{1/2} + z^{-1/2})^N$, so that all infinite-temperature zeros of Z occur at z = -1, i.e. for the purely imaginary magnetic field [7] $H = \pm i\pi k_{\rm B}T/2 = \pm i\infty$. There is no $T = \infty$ singularity at $H = 0, z = 1.^2$

References

- Z.-D. Zhang, Philos. Mag. 87 (2007) pp. 5309–5419 and arXiv:condmat/0705.1045 (pp. 1–176).
- [2] F.Y. Wu, B.M. McCoy, M.E. Fisher, and L. Chayes, Philos. Mag. 88 (2008) pp. 3093–3095 and arXiv:0811.3876.
- [3] Z.-D. Zhang, Philos. Mag. 88 (2008) pp. 3096–3102 and arXiv:0812.2330.
- [4] F.Y. Wu, B.M. McCoy, M.E. Fisher, and L. Chayes, Philos. Mag. 88 (2008) p. 3103 and arXiv:0812.2837.
- [5] J.H.H. Perk, Philos. Mag. (Comment, to appear) and arXiv:0811.1802.
- [6] Z.-D. Zhang, Philos. Mag. (Reply, to appear) and arXiv:0812.0194.
- [7] T.D. Lee and C.N. Yang, Phys. Rev. 88 (1952) pp. 410–419.
- [8] C.N. Yang and T.D. Lee, Phys. Rev. 88 (1952) pp. 404–409.

¹The reduced free energy per site βf is often rewritten $\beta f = \phi(\{K_i\}, h) = \phi(\{\beta J_i\}, \beta H)$ with some function ϕ . Setting $\beta = 1$ is no loss of generality, as one can easily restore the β -dependence by the replacements $J_i \to \beta J_i, H \to \beta H, f \to \beta f$.

²In Zhang's paper [1], $H \equiv 0$, $z \equiv 1$, $Z = 2^N$ for any lattice with N sites at $T = \infty$, which is far from z = -1. Hence, the infinite-system dimensionless free energy βf is analytic at $\beta = 0$ also by the general theory of Yang and Lee [8].