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On principle of inertia in closed universe
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Abstract

If our universe is asymptotic to a de Sitter space, it should be closed with curvature in O(Λ) in view of dS special relativity. Conversely, its
evolution can fix on Beltrami systems of inertia in the ds-space without Einstein’s ‘argument in a circle’. Gravity should be local ds-invariant
based on localization of the principle of inertia.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In classical physics, it is well known that for both Newton
theory and Einstein’s special relativity the principle of inertia
(PoI) with Galilean symmetry and Poincaré symmetry, respec-
tively, plays an extremely important role as the benchmark of
physics for defining physical quantities and introducing physi-
cal laws. But, in Einstein’s point of view, there is an ‘argument
in a circle’ for the PoI as the benchmark.

Some eighty five years ago, Einstein claimed:

The weakness of the PoI lies in this, that it involves an ar-
gument in a circle: a mass moves without acceleration if it
is sufficiently far from other bodies; we know that it is suf-
ficiently far from other bodies only by the fact that it moves
without acceleration. Are there at all any inertial systems
for very extended portions of the space–time continuum, or,
indeed, for the whole universe? We may look upon the prin-
ciple of inertia as established, to a high degree of approxima-
tion, for the space of our planetary system, provided that we
neglect the perturbations due to the sun and planets. Stated
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more exactly, there are finite regions, where, with respect to
a suitably chosen space of reference, material particles move
freely without acceleration, and in which the laws of the spe-
cial theory of relativity, . . . , hold with remarkable accuracy.
Such regions we shall call “Galilean regions” [1].

In fact, to avoid this ‘weakness’ is one of the main moti-
vations for Einstein from special relativity to general relativity
based on his equivalence principle and general principle of rel-
ativity as an extension of the special principle of relativity.

In general relativity, however, what is realized for the gen-
eral principle of relativity is the principle of general covariance.
Although it is always possible to analyze physics in terms of
arbitrary (differentiable) coordinate systems at classical level,
‘the principle of covariance has no forcible content’ [2]. For
the equivalence principle, it requires that physical quantities
and laws are in ‘their familiar special-relativistic forms’ in lo-
cal Lorentz frames [2]. The symmetry for physical quantities
and laws, however, is local GL(4,R) or its subgroup SO(1,3)

without local translation in general. Thus, in ‘Galilean regions’,
Poincaré symmetry of PoI as the benchmark in special relativity
is partially lost. These seem away from Einstein’s original in-
tention and lead to the benchmark of physics with gravity is not
completely in consistency with that in special relativity without
gravity.
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Recent observations show that our universe is accelerated
expanding [3,4]. It is certainly not asymptotic to a Minkowski
(Mink)-space, rather quite possibly asymptotic to a de Sitter
(dS)-space with a tiny cosmological constant Λ. These present
great challenges to the foundation of physics on the cosmic
scale (see, e.g., [5]). In fact, it is the core of challenges: What
are the benchmarks of physics on the cosmic scale? Are they
consistent?

In view of the dS-invariant special relativity [6–14], how-
ever, there is a PoI of dS-invariance on dS-space with Beltrami
systems of inertia (denoted BdS-space). Here we show that if
the universe is asymptotic to a dS-space, it should be closed
with a tiny curvature in the order of Λ, O(Λ). Conversely,
the evolution of the universe can fix on the Beltrami systems.
Thus, the universe acts as the origin of the PoI of dS-invariance
without Einstein’s ‘argument in a circle’ so that the benchmark
of physics on the cosmic scale should still be the PoI of dS-
invariance. Then, we explain that the benchmark of physics
with gravity should be the localization of the PoI of the dS spe-
cial relativity. Thus, the PoI of dS-invariance and its localization
should play the role of the consistent benchmarks of physics on
the cosmic scale in the universe.

Actually, based on the principle of relativity [6,7] and the
postulate on invariant universal constants, the speed of light c

and the curvature radius R [8,9], the dS special relativity can be
set up on the BdS-space. While Einstein’s special relativity is
the limiting case of R → ∞.

In the dS special relativity, Beltrami coordinate systems [15]
with Beltrami time simultaneity are very similar to Mink-
systems in Einstein’s special relativity. Namely, in the BdS-
space geodesics are all straight world lines so that there is a PoI
with a law of inertia for free particles and light signals. All these
issues are transformed symmetrically under the fractional linear
transformations with a common denominator (FLTs) of dS-
group SO(1,4) in the Beltrami atlas chart by chart. It is signifi-
cant that the Beltrami systems and their Robertson–Walker-like
dS-counterpart with respect to proper-time simultaneity provide
an important model. In this model, the dS-group as a maximum
symmetry ensures that there are both the PoI and the cosmolog-
ical principle on dS-space as two sides of a coin. On one side,
there is the BdS-space with the PoI, while on the other there is
a Robertson–Walker-like dS-space with the cosmological prin-
ciple having an accelerated expanding closed 3d cosmos S3 of
curvature in the order of O(R−2). Since the both can be trans-
formed each other explicitly by changing the simultaneity just
like flip a coin, the Robertson–Walker-like dS-space displays
as an origin of the PoI, while the PoI provides a benchmark of
physics on the dS-space.

If the universe is asymptotic to a dS-space with R �
(3/Λ)1/2. In view of the dS special relativity, the universe
should be asymptotic to the Robertson–Walker-like dS-space
in the model so that it should be closed and the deviation from
flatness is in the order of Λ,O(Λ). This is an important predic-
tion more or less consistent with recent data from WMAP [4]
and can be further checked.

Conversely, the asymptotic behavior of the universe should
naturally pick up a kind of the Robertson–Walker-like dS-
systems with such a ‘cosmic’ time τ that its axis coincides
with the revolution time arrow of the real cosmic time τu in the
universe. Since the ‘cosmic’ time τ in the Robertson–Walker-
like dS-space is explicitly related to the Beltrami time x0, the
universe should also fix on a kind of Beltrami systems with
x0 transformed from the ‘cosmic’ time τ . Therefore, via its
evolution time arrow of τu picking up a ‘cosmic’ time τ on
the Robertson–Walker-like dS-space, the universe should just
act as an origin of such kind of Beltrami systems in which
the PoI holds. Thus, there do exist the inertial systems in the
universe and there is no Einstein’s ‘argument in a circle’ for
the PoI.

In general relativity, there is no special relativity in dS-space.
In the dS special relativity, there is no gravity in dS-space. How
to describe gravity?

In the light of Einstein’s ‘Galilean regions’ [1], where his
special relativity with full Poincaré symmetry should hold lo-
cally, the PoI should be localized. Therefore, in view of the
dS special relativity, on spacetimes with gravity there should
be local dS-frame anywhere and anytime so that the PoI of
the dS special relativity should hold locally. If so, the local-
ized PoI of the dS special relativity should be the benchmark
of physics with gravity. This is in consistency with the role
played by the PoI of the dS special relativity. We may further
require that gravity have a gauge-like dynamics characterized
by a dimensionless constant g � (ΛGh̄/c3)1/2 ∼ 10−61 from
the cosmological constant Λ and the Planck length. A simple
model has implied this should be the case [23–25].

This Letter is arranged as follows. In Sections 2, we argue
why there is a PoI on dS-space and very briefly introduce the dS
special relativity. In Section 3, we introduce the relation be-
tween the PoI and the cosmological principle on dS-space as
well as the cosmological meaning of dS special relativity. In
Section 4, we explain why the universe can fix on the Beltrami
systems of inertia without Einstein’s ‘argument in a circle’. In
Section 5, we very briefly discuss that gravity should be based
on localization of the dS special relativity with PoI and intro-
duce the simple model for dS-gravity. Finally, we end with a
few remarks.

2. On de Sitter special relativity

Is there special relativity with a PoI on dS-space?
Yes! Absolutely. This can be enlightened from two deferent

but related angles [6–12].
Firstly, as is well known, weakening the Euclid fifth ax-

iom leads to Riemann and Lobachevsky geometries on an al-
most equal footing with Euclid geometry. There is a physi-
cal analog via an inverse Wick rotation of 4d Euclid space,
Riemann sphere and Lobachevsky hyperboloid E4/S4/L4, re-
spectively. Namely, there should be two other kinds of the
dS/AdS-invariant special relativity on an almost equal footing
with Einstein’s special relativity [12]. In fact, there is a one-
to-one correspondence between three kinds of geometries and
their physical counterparts. We list the correspondence as fol-
lows:
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Geometry Space–time physics
E4/S4/L4 M1,3/dS1,3/AdS1,3

ISO(4)/SO(5)/SO(1,4) ISO(1,3)/SO(1,4)/SO(2,3)

Descartes, Beltrami atlas Minkowski, Beltrami atlas
Points Events
Straight line Straight world line
Principle of invariance Principle of relativity
Klein’s Erlangen program Theory of special relativity

Secondly, owing to Umov, Weyl and Fock [16], it can be
proved that the most general form of the transformations among
inertial coordinate systems

(2.1)x′i = f i
(
xi

)
, x0 = ct, i = 0, . . . ,3,

which transform a uniform straight line motion, i.e. the inertial
motion, in F(x)

xa = va(t − t0) + xa
0 ,

(2.2)va = dxa

dt
= const, a = 1,2,3,

to a motion of the same nature in F ′(x′), are of FLT-type.
As in Einstein’s special relativity, the principle of relativ-

ity implicates that there is a metric in inertial systems on
4d space–time with signature ±2 and it is invariant under
a transformation group with ten parameters including space–
time ‘translations’, boosts and space rotations. Thus, these 4d
spaces are maximally symmetric, i.e. Mink/dS/AdS of zero,
positive or negative constant curvature, invariant under group
ISO(1,3)/SO(1,4)/SO(2,3), respectively. As for invariant uni-
versal constants, in addition to the speed of light c there is an-
other invariant constant R, the radius of dS/AdS-spaces. There-
fore, the dS/AdS special relativity can be set up based on the
principle of relativity and the postulate on invariant universal
constants [8,9].

The dS-space as a 4d hyperboloid HR can be embedded in a
(1 + 4)-dimensional Mink-space, HR ⊂ M1,4:

(2.3)HR: ηABξAξB = −R2,

(2.4)ds2 = ηAB dξA dξB,

where ηAB = diag(1,−1,−1,−1,−1), A,B = 0, . . . ,4.
On the hyperboloid, a kind of uniform great ‘circular’ mo-

tions of a particle with mass mR can be defined by a conserved
5d angular momentum:

(2.5)
dLAB

ds
= 0, LAB := mR

(
ξA dξB

ds
− ξB dξA

ds

)
.

For the particle, there is an Einstein-like formula:

(2.6)− 1

2R2
LABLAB = m2

R, LAB := ηACηBDLCD.

Obviously, Eqs. (2.3), (2.4), (2.5) and (2.6) are invariant un-
der linear transformations of dS-group SO(1,4). For a massless
particle or a light signal with mR = 0, similar motion can be
defined as long as the proper time s is replaced by an affine
parameter λ.

Via a ‘gnomonic’ projection without antipodal identification,
HR becomes the BdS-space with a Beltrami atlas [8,9] chart by
chart. In the charts U±4, for instance,

(2.7)xi
∣∣
U±4

= Rξi

ξ4
, i = 0, . . . ,3;

(2.8)ξ4
∣∣
U±4

=
(

ξ02 −
3∑

a=1

ξa2 + R2

)1/2

≷ 0,

there are condition from (2.3) and BdS-metric from (2.4)

(2.9)σ(x) = σ(x, x) := 1 − R−2ηij x
ixj > 0,

(2.10)ds2 = [
ηijσ (x)−1 + R−2ηikηjlx

kxlσ (x)−2]dxi dxj ,

where ηij = diag(1,−1,−1,−1). Under FLTs of SO(1,4)

sending an event A(ai) to the origin

xi → x̃i = ±σ(a)1/2σ(a, x)−1(xj − aj
)
Di

j ,

Di
j = Li

j + R−2ηjka
kal

(
σ(a) + σ(a)1/2)−1

Li
l ,

(2.11)L := (
Li

j

)
i,j=0,...,3 ∈ SO(1,3),

(2.9) and (2.10) are invariant. Thus, inertial systems and inertial
motions transform among themselves, respectively.

For a pair of events (A(ai), X(xi)),

(2.12)Δ2
R(a, x) = R2[σ 2(a, x) − σ(a)σ (x)

]
� 0

is invariant under (2.11). Thus, the pair is time-like, null, or
space-like, respectively.

The Beltrami light-cone at an event A with running points X

is

(2.13)FR := R
{
σ(a, x) − [

σ(a)σ (x)
]1/2} = 0.

At the origin ai = 0, it is just Minkowskian ηij x
ixj = 0.

Under the ‘gnomonic’ projection, the uniform great ‘circu-
lar’ motions are projected as a kind of inertial motions along
geodesics. In fact, the geodesics are Lobachevsky-like straight
world lines and vise versa. A time-like geodesic, along which a
particle with mass mR moves, is equivalent to

(2.14)
dpi

ds
= 0, pi := mRσ(x)−1 dxi

ds
= Ci = const.

Under certain initial condition it is just a straight world line with
respect to w = w(s)

(2.15)xi(w) = ciw + bi.

A light signal moves along a null geodesic with an affine para-
meter λ can be written as

(2.16)
dki

dλ
= 0, ki := σ−1(x)

dxi

dλ
= const.

It can also be expressed as a straight line [8,9].
From both (2.14) and (2.16), it follows that the coordinate

velocity components are constants

(2.17)
dxa

dt
= va = const, a = 1,2,3.

Thus, the both motions of free particles and light signals are
indeed of inertia as in (2.2), chart by chart. Namely, the law of
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inertia holds on the BdS-space. This together with the principle
of relativity is just the PoI in the BdS-space.

For such a free massive particle a set of conserved quanti-
ties pi in (2.14) and Lij can be defined as a pseudo 4-momen-
tum vector and a pseudo 4-angular-momentum, respectively

(2.18)Lij = xipj − xjpi,
dLij

ds
= 0.

In fact, pi and Lij constitute the conserved 5d angular momen-
tum in (2.5). And the Einstein-like formula (2.6) becomes a
generalized Einstein’s formula

(2.19)E2 = m2
Rc4 + p2c2 + c2

R2
j2 − c4

R2
k2,

with energy E = p0, momentum pa , pa = δabp
b , ‘boost’ ka ,

ka = δabk
b and 3-angular momentum ja , ja = δabj

b. For a
massless particle or a light signal with mR = 0, similar issues
hold so long as the proper time is replaced by an affine parame-
ter.

If we introduce the Newton–Hooke constant ν [13] and take
R as R � (3/Λ)1/2,

(2.20)ν := c

R
� c(3/Λ)−1/2, ν2 ∼ 10−35 s−2.

It is so tiny that all experiments at ordinary scales cannot dis-
tinguish the dS special relativity from Einstein’s one.

In order to make sense of inertial motions and these observ-
ables for an inertial observer OI rested at the spacial origin of
the Beltrami system, the simultaneity should be defined. Similar
to Einstein’s special relativity, two events A and B are simulta-
neous if and only if their Beltrami temporal coordinate values
x0(A) and x0(B) are equal:

(2.21)a0 := x0(A) = x0(B) =: b0.

It is called the Beltrami simultaneity and defines a 1+3 decom-
position of the BdS-metric (2.10)

(2.22)

ds2 = N2(dx0)2 − hab

(
dxa + Na dx0)(dxb + Nb dx0)

with lapse function, shift vector, and induced 3-geometry on Σc

in the chart, respectively,

N = {
σΣc(x)

[
1 − (

x0/R
)2]}−1/2

,

Na = x0xa
[
R2 − (

x0)2]−1
,

(2.23)hab = δabσ
−1
Σc

(x) − [
RσΣc(x)

]−2
δacδbdxcxd,

where σΣc(x) = 1 − (x0/R)2 + δabx
axb/R2. In particular, at

x0 = 0, σΣc(x) = 1 + δabx
axb/R2, 3-hypersurface Σc is iso-

morphic to an S3 in all Beltrami coordinate charts.

3. Principle of inertia and cosmological principle as two
sides of a coin

On the dS-space, there is an important relation between the
PoI and the cosmological principle. It is just like two sides of a
coin.
In fact, for an observer rest at spacial origin xa = 0 of Bel-
trami system, there is another simultaneity: the proper-time si-
multaneity with respect to an ideal clock’s proper-time τ . It is
easy to see that the proper-time τ is explicitly related to the
Beltrami time x0:

(3.1)τ := τR = R sinh−1(R−1σ− 1
2 (x)x0).

Thus, the proper-time simultaneity can be defined as: all events
X(xi) are simultaneous with respect to the observer if and only
if their proper time are equal. Namely,

(3.2)x0σ−1/2(x, x) =: ξ0 = R sinh
(
R−1τ

) = const.

In fact, these events are comoving with the observer, who now
becomes a comoving one OC with respect to all these events.
The line-element on a simultaneous hypersurface Στ now is

(3.3)dl2 = −ds2
Στ

,

where

ds2
Στ

= R2
Στ

dl2
Στ 0,

R2
Στ

:= σ−1(x, x)σΣτ (x, x) = 1 + (
ξ0/R

)2
,

σΣτ (x, x) := 1 + R−2δabx
axb > 0,

(3.4)

dl2
Στ 0 := {

δabσ
−1
Στ

(x) − [
RσΣτ (x)

]−2
δacδbdxcxd

}
dxa dxb.

It is clear that this simultaneity is directly related to the cos-
mological principle on the dS-space. In fact, if the proper time τ

is taken as a temporal coordinate for the observer OC , the BdS-
metric (2.10) becomes as a Robertson–Walker-like dS-metric
with τ being a ‘cosmic’ time and an accelerated expanding 3d
cosmos isomorphic to S3:

(3.5)ds2 = dτ 2 − dl2 = dτ 2 − cosh2(R−1τ
)
dl2

Στ 0.

It is important that two kinds of simultaneity relate the BdS-
metric (2.10) with the PoI and the Robertson–Walker-like dS-
metric (3.5) with the cosmological principle. They do make
sense in two types of measurements: the Beltrami simultaneity
is for those of the inertial observer OI relevant to the PoI and
the proper time simultaneity for those of the comoving observer
OC concern ‘cosmic’ effects of all distant stars and cosmic
objects except the cosmological constant as test stuffs. Thus,
on the dS-space there is a kind of inertial-comoving observers
OI−C who play two roles with apparatus having two different
types of time scales and relevant rulers. What should be done
for them from their comoving observations to another type of
measurements is to switch off the ‘cosmic’ time τ with the ‘cos-
mic’ rule and on the Beltrami time x0 = ct with the Beltrami
rule, respectively, and vise versa. Namely, if the observers as co-
moving ones, OC , on (3.5) would change their measurements
from the proper-time simultaneity to the Beltrami time one ac-
cording to the relation (3.1), they become inertial ones OI , for
whom the PoI makes sense, and vise versa.

Actually, for the dS-space this provides a very meaningful
model like a coin with two sides. On one side, there is the PoI on
the BdS-space (2.10) together with the law of inertia on inertial
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systems with respect to a set of inertial observers OI . On an-
other side, the Robertson–Walker-like dS-space (3.5) displays
the cosmological principle with respect to a set of comoving
observers OC . In other words, the ‘cosmic’ background of the
Robertson–Walker-like dS-space (3.5) supports the PoI on the
BdS-space (2.10). And conversely, the PoI provides a bench-
mark of physics related to ‘cosmic’ observations.

4. Are there any inertial systems for the whole universe?

‘Are there at all any inertial systems for very extended por-
tions of the space–time continuum, or, indeed, for the whole
universe?’ [1]. For Einstein, the answer seems to be negative
unless for the ‘Galilean regions’. However, in view of the dS
special relativity, the answer is positive!

Actually, the universe does fix on a kind of inertial sys-
tems in the following manner. Firstly, if the universe is accel-
erated expanding and asymptotic to a dS, its fate should be the
Robertson–Walker-like dS-space (3.5). This is very natural in
view of the dS special relativity. Secondly, the time direction
and the homogeneous space of the universe tend to the ‘cos-
mic’ time and the 3d cosmos as an accelerated expanding S3

of the Robertson–Walker-like dS-space, respectively. These set
up the directions of the ‘cosmic’ time axis and the spacial axes
for the Robertson–Walker-like dS up to some spacial rotations
in all them transformed each other by dS-group. Thirdly, by
means of the important relation between the BdS-metric (2.10)
and the Robertson–Walker-like dS-metric (3.5) by changing the
simultaneity, or just simply via the relation (3.1) between the
Beltrami time x0 and the ‘cosmic’ time τ , the directions of the
axes of the Beltrami systems can be given. In fact, the Beltrami
time axis is related to the ‘cosmic’ time axis in the Robertson–
Walker-like dS-space, while the spacial axes of the Robertson–
Walker-like dS-metric (3.5) are just the Beltrami spacial ones in
the BdS-metric (2.10). Thus, the evolution of the universe does
fix on the Beltrami inertial systems.

It is important that such a way of determining the Beltrami
systems of inertia is completely different from the way of Ein-
stein [1]. Actually, the gravitation in the universe does not
explicitly play any roles here and there is nothing related to
Einstein’s ‘argument in a circle’.

In the Beltrami systems, there are two universal constants,
c and R. In order to set up the Beltrami systems, it is also
needed to determine their values concretely. However, it is clear
that as inertial-frames the Beltrami systems do not depend on
their concrete values unless they are related to observations in
the universe. In this case, their values should be given by two
independent experiments or observations. Note that these con-
stants are supposed to be invariant and universal approximately.
So, the speed of light c may still be taken as that in Einstein’s
special relativity, which is just a limiting case R → ∞ of the dS
special relativity. Thus, this also fixes on the origin of the Bel-
trami systems since the Beltrami light cone (2.13) at the origin
is just Minkowskian. As for the value of R, it may also be given
by R � (3/Λ)1/2 with the Λ being taken in the precise cos-
mology nowadays. Furthermore, the re-scaling of the curvature
radius R may lead to the conformal extension and compactifi-
cation of the dS-space together with that of the Mink-space and
the AdS-space [14].

It is also clear and important that although the temporal axis
of such kind of Beltrami systems can be fixed on by the evolu-
tion of the universe in the above manner, the symmetry among
all Beltrami systems is still of the dS-group so long as the cos-
mological effects are not be taken into account. Otherwise, the
symmetry should be reduced to the group SO(4) for the comov-
ing observations in the universe. This may shed light on the
inconsistency between the principle of relativity and the cos-
mological environment (see, e.g. [17]).

Further, different kinds of PoI together with relevant inertial-
frames in all possible kinematics, such as Einstein’s special
relativity, Newton mechanics, Newton–Hooke mechanics [13]
and so on can be viewed as certain contractions in different lim-
its of c and R, respectively. Therefore, the origin of all these PoI
should be inherited from the PoI in the BdS-space and in this
sense they can also be set up by the evolution of the universe.

In conclusion, the Beltrami systems of inertia and their con-
tractions does exist in the universe. Their coordinate axes can
be fixed on by the cosmic time’s arrow of the universe via the
Robertson–Walker-like dS-space, to which the universe is as-
ymptotic. This is independent of the gravitational effects. In this
sense, for the PoI in the dS special relativity and all other kinds
of PoI as its contractions, there is no longer Einstein’s ‘argu-
ment in a circle’ [1].

Of course, in the universe except at its fate as a dS-space,
there is gravity anywhere and anytime. How to take into account
the gravitational effects and what should be done for the PoI?
What is the benchmark of physics with gravity?

5. Gravity and localized principle of inertia

In view of the dS special relativity, there is no gravity in
the dS-space. The ‘gravitational effects’ in the dS-space with
coordinate atlas other than the Beltrami one should be a kind
of non-inertial effects. Temperature and entropy in the static
dS-system are just this case in analogy with the Rindler space
in view of Einstein’s special relativity in the Mink-space [11].
Thus, the dS-space does not like a black hole.

In order to describe gravity, we would like to recall Ein-
stein’s description on ‘Galilean regions’ first. In these finite
regions, ‘the laws of the special theory of relativity, . . . , hold
with remarkable accuracy’ [1]. Namely, all gravitational effects
can be ignored on Einstein’s ‘Galilean regions’ in such a way
that his special relativity with full Poincaré symmetry should
hold locally. This is because all these regions are finite. Al-
though in practice, it may still be regarded as global symmetry
approximately with remarkable accuracy.

If there are two such kind of ‘finite regions’ of full local
Poincaré invariance at different but nearby positions, how to
pass from one to another?

According to Einstein, there should be gravity in-between
these ‘regions’. Therefore, in order to transit from one to an-
other, some curved space–time with gravity in-between should
be passed. In other words, in order to connect these ‘regions’
together, some gravitational field as interaction should be taken
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into account. Since there is local Poincaré symmetry in these
‘regions’, in order to transit in-between, the space–time with
gravity should also be of local Poincaré symmetry! Otherwise,
it cannot be consistently transited from one ‘region’ to an-
other if Poincaré symmetry cannot be maintained locally in the
course of transition. For any number of such ‘finite regions’, it
is the same.

This may also be seen from another angle in terminology
of differential geometry. Each of finite ‘Galilean regions’ is
essentially a portion of a Mink-space with Poincaré symme-
try isomorphic to an R4, so that there are intersections among
these Mink-spaces with different ‘finite regions’ at different
positions. And the transition functions on these intersections
should also be valued in Poincaré symmetry. Further, these
Mink-spaces with ‘finite regions’ may be viewed as tangent
spaces at different positions of a curved manifold as the space–
time with gravity and the transition functions are valued in local
Poincaré symmetry.

Thus, it seems to be the core of Einstein’s idea on gravity
that the theory of gravity should be based on the localization of
his special relativity with Poincaré group as full symmetry any-
where and anytime on some curved space–times. For the sake
of definiteness, we name this principle as the localized PoI with
full local symmetry or the principle of localization. Mathemati-
cally, this indicates that space–times with gravity might be such
a kind of manifolds that on them the Mink-space with (local)
full Poincaré symmetry should be as a kind of tangent spaces
anywhere and anytime in the universe. If so, the PoI as a bench-
mark should be localized on the space–times with gravity and
this should be in consistency with the case of the Mink-space as
a free space–time where gravity might be ignored.

But, in general relativity, it is not really the case as was men-
tioned at beginning.

Due to the asymptotic behavior of the universe and in the
light of Einstein’s ‘Galilean regions’ as well as in view of the
dS special relativity, we may require that gravity in the universe
should be based on the localization of the dS special relativity
with localized PoI in local dS-frame anywhere and anytime in
the universe. Further, its dynamics should also be properly of
local dS-invariance characterized by a dimensionless constant
g � (ΛGh̄/c3)1/2 ∼ 10−61 from the cosmological constant Λ

and the Planck length (see, e.g. [18,19]). If so, the benchmark of
physics is either the PoI on the dS-space as a free space on the
cosmic scale or its localization with local dS-invariance any-
where and anytime in the universe. In addition, the evolution
of the universe can also fix on the local inertial frames of dS-
invariance in the same manner as the case without gravity or
where gravitational effects can be ignored at very high accu-
racy.

A simple model for the dS-gravity has implied that these
points should work.

In fact, from Cartan connection 1-form θab = Bab
j dxj ∈

so(1,3) and Lorentz frame 1-form θa = ea
j dxj on Riemann–

Cartan manifold of Einstein–Cartan theory [20–22], it follows
a kind of connections valued at dS-algebra [23–25]

B := Bj dxj ,
(5.1)

Bj := (
BAB

j

)
A,B=0,...,4 =

(
Bab

j R−1ea
j

−R−1eb
j 0

)
∈ so(1,4).

The curvature valued at dS-algebra reads:

Fjk = (
FAB

jk

)
(5.2)=

(
Fab

jk + 2R−2eab
jk R−1T a

jk

−R−1T b
jk 0

)
∈ so(1,4),

where ea
bjk = 1

2 (ea
j ebk − ea

k ebj ), ebj = ηabe
a
j , Fab

jk and T a
jk

are curvature and torsion of Cartan connection.
The total action of the model with source may be taken as

(5.3)ST = SGYM + Sm,

where Sm is the action of source and SGYM the Yang–Mills-like
action of gravity:

SGYM = 1

4g2

∫
M

d4x e TrdS

(
FjkF jk

)

=
∫
M

d4x e

[
χ(F + 2Λ) − 1

4g2
Fab

jkFab
jk

(5.4)+ χ

2
T a

jkTa
jk

]
.

Here e = det(ea
j ), a dimensionless constant g should be intro-

duced as usual in gauge theory to describe the self-interaction
of the gravitational field, χ a dimensional coupling constant re-
lated to g and R, and F = 1

2Fab
jkeab

jk the scalar curvature of
Cartan connection, the same as the action in Einstein–Cartan
theory. In order to make sense in comparison with Einstein–
Cartan theory, we take χ = 1/(8πG) and g−2 � 3χΛ−1 with
h̄ = c = 1. In fact, g2 � Gh̄c−3Λ.

Although the gravitational field equation now should be of
Yang–Mills type, this model does pass the observation tests
in solar-scale and there are simple cosmic models having ‘Big
Bang’. But, different from general relativity, there are ‘energy–
momentum-like tensors’ for gravity from the F 2 and T 2 terms
as a kind of the ‘dark stuffs’ in the action (5.4). In fact, by means
of the relation between Cartan connection Bab

j and Ricci ro-
tational coefficients γ ab

j , we may pick up Einstein’s action
from Einstein–Cartan’s action F , and the rest terms in (5.4) are
all ‘dark stuffs’ in view of general relativity. Thus, this model
should provide an alternative framework for the cosmic data
analysis.

In this model, there is the cosmological constant Λ from lo-
cal dS-symmetry so that it is not just a ‘dummy’ constant at
classical level as in general relativity. In fact, this model can
be viewed as a kind of dS-gravity in a ‘special gauge’ and the
4-dimensional Riemann–Cartan manifolds should be a kind of
4-dimensional umbilical manifolds that there is local dS-space–
time together with ‘gauged’ dS-algebra anywhere and anytime
(see, e.g. [18,19,24]).

It is interesting that the model is renormalizable [26] with an
SO(5) gauge-like Euclidean action having a Riemann sphere
as an instanton. Thus, quantum tunneling scenario may support



94 H.-Y. Guo / Physics Letters B 653 (2007) 88–94
Λ > 0. For the gauge-like gravity, asymptotic freedom may in-
dicate that the coupling constant g should be very tiny and link
the cosmological constant Λ with the Planck length �P prop-
erly, since both the Λ and Planck scale as fixed points provide
an infrared and an ultraviolet cut-off, respectively.

We will explain these issues in detail elsewhere.

6. Concluding remarks

In physics of the last century, symmetry, localization of sym-
metry and symmetry breaking play very important roles. For the
cosmic scale physics without or with gravity, it should be also
the case. In view of the dS special relativity and in the light of
Einstein’s ‘Galilean regions’, the PoI with maximum symmetry
and its localization should still play a central role as the bench-
marks of physics in the large scale.

If the universe is asymptotic to a dS-space, it should be as-
ymptotic to a slightly closed Robertson–Walker-like dS-space,
which closely relates to the BdS-space with the PoI. There-
fore, the evolution of the universe also supports the PoI on the
BdS-space and fix on the Beltrami systems without Einstein’s
‘argument in a circle’. Thus, the PoI of the dS special relativ-
ity is a benchmark of physics on the cosmic scale when gravity
can be ignored.

We may require that on the space–times with gravity there
should be locally the PoI with local inertial frames of full dS-
symmetry anywhere and anytime. Then, the evolution of the
universe can also fix on these local inertial frames. A simple
model for the dS-gravity has implied these requirements.

Thus, the PoI of the dS special relativity and its localization
are consistent benchmarks of physics without or with gravity in
the universe.
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We show that if Yang’s quantized space–time model is completed at both classical and quantum level, it
should contain both Snyder’s model, the de Sitter special relativity and their duality.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Some sixty years ago, Snyder [1] proposed a quantized space–
time model by means of the projective geometry approach to
the de Sitter (dS)-space of momentum with two universal con-
stants: c and a, a scale near or at the Planck length �P . The 4-d
energy–momentum was defined by the inhomogeneous projective
coordinates. Then, Snyder identified the space–time coordinates’
noncommutative operators x̂μ with 4-‘translation’ generators of a
dS-algebra so(1,4) and other operators as angular momentum for
an so(1,3) ⊂ so(1,4).

Soon after, Yang [2] extended Snyder’s model to the one with
the third constant, the radius R of a dS universe in order to recover
the translation under R → ∞. Yang found an so(1,5) algebra with
c,a and R in a 6-d space with Minkowski (Mink) signature. In
Yang’s algebra, there are two so(1,4) subalgebras for coordinate
operators x̂μ and momentum operators p̂μ , respectively, with a
common so(1,3) for angular momentum operators l̂μν . And the
algebra is invariant under a Z2 dual transformation between a, x̂μ

and h̄/R, p̂μ . This is a UV–IR parameters’ transformation.
Recently, the ‘doubly special relativity’ or the ‘deformed special

relativity’ (DSR) has been proposed [3]. There is also a univer-
sal constant κ near the Planck energy, related to h̄/a in Snyder’s
model in addition to c. In the sense with one more universal con-
stant a near or at the Planck length �P in addition to c, Snyder’s

* Corresponding author.
E-mail addresses: hyguo@itp.ac.cn (H.-Y. Guo), huangcg@mail.ihep.ac.cn

(C.-G. Huang), lobby_wu@yahoo.com.cn (H.-T. Wu).
0370-2693/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.physletb.2008.04.012
model might be regarded as the earliest DSR and some of DSR
models can be given as the generalization of Snyder’s model [4].
Soon, the ‘triply special relativity’ (TSR) [5–7] has also been pro-
posed under a deformed symmetry with one more universal con-
stant, the universe radius R ∼ Λ−1/2. Later, it is found that the Lie
algebra form of the deformed symmetry is just Yang’s algebra in
the 6-d space [8]. Thus, Yang’s model might be regarded as a TSR.

The projective geometry approach to dS-space is basically
equivalent to the Beltrami model of dS-space (BdS). It is im-
portant to emphasize that the Beltrami coordinates or inhomo-
geneous projective ones, without the antipodal identification for
preserving orientation, play an important role in analogy with the
Mink-coordinates in a Mink-space. Namely, in the Beltrami at-
las, particles and light signals move along the time-like or null
geodesics being straight world-lines with constant coordinate ve-
locities, respectively. Among these systems, the properties are
invariant under the fractionally linear transformations with a com-
mon denominator of dS-group. If these motions and systems could
be regarded as of inertia without gravity, there should be the prin-
ciple of inertia in dS/AdS-space–time, respectively.

In fact, just as weakening the fifth axiom leads to non-Euclidean
geometry, giving up Einstein’s Euclidean assumption on the rest
rigid ruler and clock in special relativity leads to two other kinds
of special relativity on the dS/AdS-space–time with radius R . They
are based on the principle of inertia and the postulate of universal
constants (c, R) on an almost equal footing with the special rela-
tivity on Mink-space–time of R → ∞ [9–17].

On the other hand, it is interesting to see [18,19] that in
terms of the Beltrami model of dS-space [9,11], there is an im-
portant one-to-one correspondence between Snyder’s quantized

http://www.ScienceDirect.com/
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space–time model [1] as a DSR [3,4] and the dS special relativ-
ity [9–12]. Actually, the dS special relativity can be regarded and
simply formulated as a space–time-counterpart of Snyder’s model
for dS-space of momentum so long as the constant h̄/a in Snyder’s
model as dS-radius of momentum near the Planck scale is replaced
by R as radius of dS-space–time. Inspired by the correspondence,
the Snyder’s model–dS special relativity duality as a UV–IR duality
is proposed [18,19].

Since Snyder’s quantized 4-d space–time model is on a 4-d dS-
space of momentum, if Yang’s model is really generalized Snyder’s
with the third universal constant R , it should also be back to 4 di-
mensions. But, how to realize Yang’s model in 4 dimensions com-
pletely? In his very short Letter, Yang did not answer the question.
Recall that there are three 4-d maximally symmetric space–times
with maximum symmetries of ten generators, which are just the
Mink/dS/AdS-space with I S O (1,3)/S O (1,4)/S O (2,3) invariance,
respectively. Thus, it is impossible to realize Yang’s so(1,5) alge-
bra with fifteen generators on one space of 4 dimensions in the
sense of Riemann geometry and Lie symmetry. The TSR realization
of Yang’s so(1,5) algebra gives a tentative 4-d realization. But, it is
in terms of a deformed algebra with non-commutative geometry.
The fact that there are two so(1,4) subalgebras with a common
homogeneous Lorentz algebra so(1,3) in Yang’s so(1,5) suggests
another kind of realization: A pair of dS-spaces of 4 dimensions
with a dual relation.

In this Letter we show that if Yang’s model can be completed
with such a kind of 4-d realizations at both classical and quan-
tum level, this complete Yang model should contain both Snyder’s
quantized space–time model, the dS special relativity and their du-
ality.

This Letter is arranged as follows. In Section 2, we first recall
and complete Yang’s model with a UV–IR dual invariance in a 6-
d dimensionless Mink-space at both classical and quantum level.
Then, in Section 3, we show that the two so(1,4) subalgebras in
the complete Yang model relevant to the space–time coordinate
operators x̂μ and the momentum operators p̂μ are the same as
Snyder’s so(1,4) algebra of quantized space–time and the algebra
for ‘quantized’ energy, momentum, and angular momentum in a
dS-space of space–time, respectively. We also present a way to get
Snyder’s model, the dS special relativity and their duality from the
Yang model. Finally, we end with some concluding remarks.

2. A complete Yang model and a UV–IR duality

Under Yang’s so(1,5) algebra, there is an invariant quadratic
form of signature −4 [2] in a 6-d dimensionless Mink-space M1,5.
Then, the metric in M1,5 reads

dχ2 = ηAB dζA dζB, A,B = 0, . . . ,5, (2.1)

where ηAB = diag(+,−,−,−,−,−). The dimensionless canonical
‘momentum’ conjugate to the dimensionless ‘coordinate’ ζA can

be introduced as NA = ηAB
dζB

dχ . Thus, there is a 12-d phase space
(M,Ω) with a symplectic structure Ω and the non-vanishing ba-
sic Poisson bracket in (ζA, NA): {ζA, NB} = −δAB . Obviously, the
dimensionless 6-‘angular momentum’ LAB := ζANB − ζ B NA as
the classical counterpart of Yang’s operators (see below) forms an
so(1,5) algebra under Poisson bracket:

{
LAB,LCD} = ηADLBC + ηBCLAD − ηACLBD − ηBDLAC .

(2.2)

Under canonical quantization, in the ‘coordinate’ representa-
tion with N̂A = i ∂

∂ζA , [ζ̂A, N̂B] = −iδAB , they become operators

L̂AB forming the algebra under Lie bracket. Now, the following
operators are just the operators in Yang’s model [2] up to some
redefined coefficients

x̂0 = ia

(
ζ 5 ∂

∂ζ 0
+ ζ 0 ∂

∂ζ 5

)
= aL̂50,

x̂i = ia

(
ζ 5 ∂

∂ζ i
− ζ i ∂

∂ζ 5

)
= −aL̂5i,

p̂0 = ih̄

R

(
ζ 4 ∂

∂ζ 0
+ ζ 0 ∂

∂ζ 4

)
= h̄

R
L̂40,

p̂i = ih̄

R

(
ζ 4 ∂

∂ζ i
− ζ i ∂

∂ζ 4

)
= − h̄

R
L̂4i,

M̂i = ih̄

(
ζ 0 ∂

∂ζ i
+ ζ i ∂

∂ζ 0

)
= −h̄L̂0i,

L̂i = ih̄ε
jk

i

(
ζ j

∂

∂ζ k

)
= h̄

2
εi jkL̂

jk,

ψ̂ = i
a

R

(
ζ 5 ∂

∂ζ 4
− ζ 4 ∂

∂ζ 5

)
= a

R
L̂45, (2.3)

with ε123 = ε 23
1 = 1 and ζ j = η jAζA . They form Yang’s so(1,5)

algebra as follows:

[
p̂μ, p̂ν

] = ih̄R−2l̂μν,
[
l̂μν, p̂ρ

] = ih̄
(
ηνρ p̂μ − ημρ p̂ν

)
,

p̂μ = ημν p̂μ, l̂μν = h̄L̂μν,[
x̂μ, x̂ν

] = ih̄−1a2l̂μν,
[
l̂μν, x̂ρ

] = ih̄
(
ηνρ x̂μ − ημρ x̂ν

)
,

x̂μ = ημν x̂μ,[
x̂μ, p̂ν

] = ih̄ημνψ̂,
[
ψ̂, x̂μ

] = −ia2h̄−1 p̂μ,[
ψ̂, p̂μ

] = ih̄R−2 x̂μ,
[
ψ̂, l̂μν

] = 0,

together with an so(1,3) for the 4-d angular momentum opera-
tors.

It is clear that there are two so(1,4) for coordinate operators
x̂μ and momentum operators p̂ν , respectively, with a common
so(1,3) for l̂μν . It is also clear that in Yang’s algebra with respect
to the 6-d ‘angular momentum’ there is a Z2 = {e, r|r2 = e} dual
transformation with

r: a → h̄

R
, x̂μ → p̂μ, ψ̂ → −ψ̂. (2.4)

Since a is near or equal to the Planck length �P and R is the radius
of a dS universe, the invariance under the Z2 dual transformation
is a UV–IR duality.

3. The Snyder’s model–dS special relativity duality from the Yang
model

3.1. Snyder’s model from the Yang model

Snyder considered a homogeneous quadratic form −η2 = η2
0 −

η2
1 − η2

2 − η2
3 − η2

4 := ηABηAηB < 0, partially inspired by Pauli. It
is a model via homogeneous (projective) coordinates of a 4-d mo-
mentum space of constant curvature, a dS-space of momentum.
In fact, it can also be started from a dS-hyperboloid Ha in a 5-d
Mink-space of momentum with radius 1/a

Ha: ηABηAηB = − h̄2

a2
, ds2

a = ηABdηAdηB . (3.1)

Snyder’s inhomogeneous projective momentum is almost the
same as the momentum in Beltrami coordinates. In order to pre-
serve orientation, the antipodal identification should not be taken
so that the Beltrami atlas should contain at least eight patches to
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cover the hyperboloid (see, e.g., [9]). In the patch U4+, η4 > 0, Sny-
der’s Beltrami momentum read

qμ = h̄

a

ημ

η4
. (3.2)

Now the metric in the patch becomes ds2
a = gμν

a dqμdqν with

gμν
a = σ−1(q)ημν + a2

h̄2
qμqνσ−2(q),

σ (q) = 1 − a2

h̄2
qνqν > 0, (3.3)

where qμ = ημνqν . Along geodesic that is the great ‘circle’ on
Ha , the space–time ‘coordinates’ and angular momentum are con-
served

xμ
a = Rσ−1(q)

dqμ

dsa
= consts,

lμν
a = R

(
qμ dqν

dsa
− qν dqμ

dsa

)
= consts. (3.4)

Importantly, from these conserved Killing observables and q0 = E
as energy,1 it follows an important identity

dE

dqi
= consts. (3.5)

It would mean that there is some ‘wave packet’ moving with con-
stant ‘group velocity’. Namely, a law of inertia-like in space of
momentum hidden in Snyder’s model [19].

Regarding such a ‘wave packet’ as an object in the space of
momentum, a 8-d phase space (Ma,ωa) can be constructed and
locally there are Snyder’s momentum qμ as canonical momen-
tum and the conjugate variables Xμ as canonical coordinates
(qμ, Xμ = Rgμν

a dqν/dsa) with a symplectic structure ωa and ba-
sic Poisson brackets {qμ, Xν}a = −δν

μ , {qμ,qν}a = 0, {Xμ, Xν}a = 0.

Then Snyder’s space–time ‘coordinates’ xμ
a and angular momen-

tum lμν
a can be expressed in terms of these canonical variables

(qμ, Xμ). And it is straightforward to show that they form an
so(1,4) under Poisson bracket.

In a momentum representation of the canonical quantization,
the operators of Snyder’s ‘coordinates’ and angular momentum are
just ten Killing vectors of the model, up to some coefficients,

x̂i
a := ih̄

[
∂

∂qi
− a2

h̄2
qiqμ

∂

∂qμ

]
= L̂4i

a , (3.6)

x̂0
a := ih̄

[
∂

∂q0
− a2

h̄2
q0qμ

∂

∂qμ

]
= L̂40

a . (3.7)

Together with ‘boost’ M̂ai = x̂i
aq0 + x̂0

aqi =: l̂0i
a = L̂0i

a and ‘3-angular

momentum’ L̂ai = − 1
2 εi jk(x̂ j

aqk − x̂k
aq j) =: 1

2 εi jkl̂ jk
a = 1

2 εi jkL̂ jk
a , they

are the components of 5-d angular momentum L̂AB
a and form an

so(1,4) algebra:

[
x̂i

a, x̂ j
a
] = ih̄−1a2l̂i j

a ,
[
x̂0

a , x̂i
a

] = ih̄−1a2l̂0i
a ,

[L̂ai, L̂aj] = ih̄εi j
k L̂ak, [M̂ai, M̂aj] = ih̄l̂i j

a ,

ε12
3 = −1, etc. (3.8)

Obviously, Snyder’s quantized space–time ‘coordinates’ so(1,4)

algebra is the same as the coordinate so(1,4) subalgebra of Yang’s
so(1,5). But, the operators of canonical coordinates X̂μ are still
commutative.

1 c is set 1 in the Letter.
In order to get Snyder’s model from the complete Yang model,
we consider a dimensionless dS5 ∼= H ⊂ M1,5:

H : ηABζAζB = − R2

a2
. (3.9)

Take a subspace I1 of H ⊂ M1,5 as an intersection

I1 = H |ζ 4=0: H ∩ P |ζ 4=0 ⊂ M1,5, (3.10)

where P |ζ 4=0 is a hyperplane defined by ζ 4 = 0. Introduce dimen-
sional coordinates

ημ = h̄

R
ζμ, η4 = h̄

R
ζ 5, (3.11)

then the subspace I1 becomes Ha (3.1) with metric (3.3) related
to the metric (2.1) restricted on I1

ds2
a = h̄2

R2
dχ2|I1 . (3.12)

Thus, the A,B �= 4 components of Yang’s 6-d ‘angular mo-
mentum’ LAB consist of a 5-d angular momentum which is
identical to the 5-d angular momentum LAB

a in Snyder’s model.
Furthermore, Yang’s operators of coordinates, angular momentum
{x̂μ, l̂μν} and their algebra are the same as Snyder’s operators
{x̂μ

a , l̂μν
a } for the Killing observables and their algebra. Therefore,

the complete Yang model really contain Snyder’s model as a sub-
model.

3.2. The Beltrami model of dS special relativity from the Yang model

On a dS-space–time with radius R as a hyperboloid embedded
in a (1 + 4)-d Mink-space

HR : ηABξ Aξ B = −R2, ds2
R = ηAB dξ A dξ B , (3.13)

a free particle with mass h̄/a may move uniformly along a great
‘circle’ defined by a conserved 5-d angular momentum

dLAB
R

dsR
= 0, LAB

R := h̄

a

(
ξ A dξ B

dsR
− ξ B dξ A

dsR

)
, (3.14)

with an Einstein-like formula for mass h̄/a

− 1

2R2
LAB

R LR AB = h̄2

a2
, LR AB = ηACηB DLC D

R . (3.15)

The conserved momentum and angular momentum of the par-
ticle can be defined as

dpμ
R

ds
= 0, pμ

R = h̄

Ra

(
ξ4 dξμ

dsR
− ξμ dξ4

dsR

)
, (3.16)

dlμν
R

ds
= 0, lμν

R = h̄

a

(
ξμ dξν

dsR
− ξν dξμ

dsR

)
. (3.17)

And the Einstein-like formula becomes

pμ
R pRμ − 1

2R2
lμν
R lRμν = h̄2

a2
, (3.18)

where pRμ = ημν pν
R and lRμν = ημρηνσ lρσ

R .
In a Beltrami atlas of the BdS-space–time [9], the Beltrami co-

ordinates read in the patch U4+, ξ4 > 0,

yμ = R
ξμ

ξ4
, ξ4 �= 0 (3.19)

and the metric becomes ds2
R = gRμν dyμ dyν with

gRμν = σ−1(y)ημν + R−2 yμ yνσ
−2(y),

σ (y) = 1 − R−2 yν yν > 0, (3.20)
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where yμ = ημν yν . For the free particle with mass h̄/a along
geodesic that is the great ‘circle’ on HR , its motion becomes uni-
form motion with constant coordinate velocity. In fact, its momen-
tum and angular momentum

pμ
R = h̄

a
σ−1(y)

dyμ

dsR
, lμν

R = h̄

a

(
yμ dyν

dsR
− yν dyμ

dsR

)
, (3.21)

are constants. This leads to the law of inertia for the particle:

vi := dyi

dt
= consts. (3.22)

For the particle, there is an associated phase space (MR ,ωR)

and locally there are Beltrami coordinates as the canonical coor-
dinates and the covariant 4-momentum as canonical momentum
(yμ, Pμ = h̄

a gμνdyν/dsR) with a symplectic structure and basic
Poisson brackets in the patch {yμ, Pν}R = −δ

μ
ν , {yμ, yν}R = 0,

{Pμ, Pν}R = 0. Now, the conserved Killing momentum and angu-
lar momentum of the particle can be expressed in terms of the
canonical variables and form an so(1,4) algebra under the Poisson
bracket.

In a coordinate representation of the canonical quantization, the
operators of these conserved Killing Beltrami momentum and an-
gular momentum are just ten Killing vectors of the model up to
some coefficients forming an so(1,4) under Lie bracket

[
p̂μ

R , p̂ν
R

] = ih̄

R2
l̂μν
R ,

[
l̂μν
R , p̂ρ

R

] = ih̄
(
ηνρ p̂μ

R − ημρ p̂ν
R

)
, (3.23)

together with an so(1,3) for angular momentum operators l̂μν
R .

This is the same as the momentum subalgebra of the Yang model.
It is remarkable that the conserved Killing Beltrami momentum

leads to the law of inertia in the patch and it holds globally in the
atlas patch by patch. In fact, the dS special relativity can be set
up based on the principle of inertia and the postulate of universal
constants, the speed of light c and the dS-radius R [9].

In order to show that there is indeed the BdS-model of the dS
special relativity from the complete Yang model, let us consider
another subspace I2 of H ⊂ M1,5 (3.9) of the Yang model as an
intersection

I2 = H |ζ 5=0: H ∩ P |ζ 5=0 ⊂ M1,5, (3.24)

where P |ζ 5=0 is a hyperplane defined by ζ 5 = 0. Introduce dimen-
sional coordinates

ξμ = aζμ, ξ4 = aζ 4, (3.25)

then I2 becomes the dS-hyperploid HR (3.13) and its metric (3.20)
becomes the metric (2.1) restricted on I2

ds2
R = a2dχ2|I2 . (3.26)

It is also straightforward now to find that the A,B �= 5 compo-
nents of the 6-d ‘angular momentum’ operators L̂AB in the Yang
model consist of a 5-d angular momentum which is just the an-
gular momentum operators L̂AB

R in the dS special relativity. And

Yang’s momentum, angular momentum operators p̂μ, l̂μν in (2.3)
and their subalgebra are just the Killing Beltrami momentum, an-
gular momentum operators p̂μ

R , l̂μν
R in the Beltrami model of the

dS special relativity. Thus, the complete Yang model really contain
the BdS-model of dS special relativity as a sub-model.

3.3. The Snyder’s model–dS special relativity duality in the Yang model

It is important to see [19] that between Snyder’s model and
the dS special relativity, there is also a Z2 = {e, s | s2 = e} dual
exchange with

s: xμ
a → pμ

R , a → h̄
. (3.27)
R

This is also a UV–IR exchange. And it is isomorphic to the Z2 du-
ality in Yang’s model (2.4).

The Snyder’s model–dS special relativity duality contains some
other contents. One is that the cosmological constant Λ should
be a fundamental constant in the Nature like c, G and h̄. This is
already indicated in Yang’s model as long as R = (3/Λ)1/2 is taken.

Thus, not only both Snyder’s model and the dS special relativity
are sub-models in the complete Yang model, but their Z2 duality
transformations are contained in that of the Z2 duality in the Yang
model as well.

4. Concluding remarks

The above ‘surgery’ for two subspaces I2 and I2 of a dimen-
sionless H ⊂ M1,5 (3.9) in the Yang model shows that both Sny-
der’s model and the BdS-model of dS special relativity are really
sub-physics of the complete Yang model. And the UV–IR duality
in the Yang model is just the one-to-one exchange of the Snyder
model–dS special relativity duality.

It is quite possible that there are some other physical implica-
tions and/or relations with other dualities, such as the T-duality
and S-duality, if a and R may have other identifications.

It should be mentioned that a Yang-like model with an so(2,4)

symmetry on a dimensionless (2,4)-d flat space M2,4 can be set
up and all similar issues for Snyder’s model and the dS special rel-
ativity or for an anti-Snyder’s model on an AdS-space of momen-
tum and the AdS special relativity can also be realized started with
a dimensionless AdS5 ∼= H or its boundary ∂(AdS5) ∼= N ⊂ M2,4.

Since Yang’s algebra is just the Lie algebra form of the de-
formed algebra in TSR, which is a generalization of DSR, it should
be explored from the point of view in our approach what are the
relations with the other DSR models and the TSR. It seems that the
duality exists between other DSR models and dS-space–time since
some DSR models can be realized as Snyder’s model in different
coordinates on the dS-space of momentum, the corresponding co-
ordinates on the dS-space–time may also be taken. But, this may
cause some issues due to the non-inertial effects from the view-
point of the dS special relativity.

Finally, we would like to emphasize that the complete Yang
model should be regarded as a theory of the special relativity
based on the principle of inertia in the both space–time and space
of momentum as well as the postulate on three universal con-
stants c, �P and R .

All above issues and related topics should be further studied.
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