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Abstract

Phase transitions of the mixed spin-1/2 and spin-S (S ≥ 1) Ising model on a
three-dimensional (3D) decorated lattice with a layered magnetic structure are in-
vestigated within the framework of a precise mapping relationship to the simple
spin-1/2 Ising model on the tetragonal lattice. This mapping correspondence gives
for the layered Ising model of mixed spins accurate analytical results when tak-
ing into account two recent conjectures on the exact solution of the spin-1/2 Ising
model on the orthorhombic lattice [Z.-D. Zhang, Phil. Mag. 87 (2007) 5309-5419].
It is shown that the critical behaviour markedly depends on a relative strength of
axial zero-field splitting parameter, inter- and intra-layer interactions. The striking
spontaneous order captured to the ’quasi-1D’ spin system is found in a restricted
region of interaction parameters, where the zero-field splitting parameter forces all
integer-valued decorating spins towards their ’non-magnetic’ spin state.
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1 Introduction

Phase transitions and critical phenomena of rigorously solvable interacting
many-particle systems are much sought after in the modern equilibrium statis-
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tical mechanics as they offer valuable insight into a cooperative nature of phase
changes [1]. Beside this, the usefulness of mathematically tractable models can
also be viewed in providing guidance on a reliability of various approximative
techniques, which are often needed for treating more complicated models that
preclude exact analytical treatment. Decorated planar Ising models, which can
be constructed by adding one or more spins on bonds of some original lattice,
belong to the simplest mathematically tractable lattice-statistical models (see
Ref. [2] and references cited therein). The main advantage of decorated planar
Ising models consists in a relative ease of obtaining their exact solutions. As
a matter of fact, several decorated planar Ising models can straightforwardly
be solved by employing the generalized decoration-iteration transformation [3]
that relates their exact solution to that one of the simple spin-1/2 Ising model
on a corresponding (undecorated) lattice, which is generally known for many
planar lattices of different topologies [4,5,6].

Quite recently, the decorated Ising models consisting of mixed spins have
attracted a great deal of attention on account of much richer critical be-
haviour in comparison with their single-spin counterparts. Exact solutions
of the mixed-spin Ising models on several decorated planar lattices have fur-
nished a deeper insight into diverse attractive issues of statistical mechanics
such as multiply reentrant phase transitions [7,8,9,10,11,12,13], multicompen-
sation phenomenon [11,12,13,14], annealed disorder [15,16,17,18,19,20], as well
as, the effect of non-zero external magnetic field [21,22,23]. In addition, the
mixed-spin Ising models on some decorated planar lattices can also be viewed
as useful model systems for some ferromagnetic, ferrimagnetic, and metamag-
netic molecular-based magnetic materials (see Refs. [24,25] for excellent recent
reviews).

Among the most convenient properties of the generalized decoration-iteration
transformation one could mention its general validity, which means that this
mapping transformation holds independently of the lattice spatial dimension
to be considered. Unfortunately, the application of decoration-iteration map-
ping was until lately basically restricted to one- and two-dimensional deco-
rated lattices due to the lack of the exact solution of the spin-1/2 Ising model
on three-dimensional (3D) lattices. The majority of studies concerned with
the mixed-spin Ising models on 3D decorated lattices were therefore based on
approximative analytical methods such as mean-field and effective-field the-
ories [26,27,28,29,30,31,32]. On the other hand, essentially exact results were
recently reported by Oitmaa and Zheng [33] for phase diagrams of the mixed-
spin Ising model on the decorated cubic lattice by adopting the decoration-
iteration transformation and the critical temperature of the corresponding
spin-1/2 Ising model on the simple cubic lattice, which is known with a high
numerical precision from the high-temperature series expansion [34]. Another
possibility of how rather accurate results can be obtained for the mixed-spin
Ising model on 3D decorated lattices is to perform extensive Monte-Carlo sim-
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ulation as recently done by Boughrara and Kerouad for the decorated Ising
film [35].

In the present work, the mixed spin-1/2 and spin-S Ising model on the layered
3D decorated lattice will be studied in particular by applying the decoration-
iteration transformation and adopting two recent conjectures on the exact
solution of the spin-1/2 Ising model on the orthorhombic lattice [36]. Even
although there still might be a controversial debate about correctness of both
Zhang’s conjectures [36], the critical point as well as other thermodynamic
quantities seem to be in a reasonable accordance with precise numerical esti-
mates of other accurate numerical methods [36,37]. From this point of view,
one should expect just small numerical error (if any) even if the conjectured
exact solution will finally turn out to be erroneous. Owing to this fact, the
combination of the generalized decoration-iteration transformation [3] with
Zhang’s putative exact solution [36] might give rather accurate results and
the main advantage of this combination is that it preserves the analytic form
of the solution to be obtained for the layered mixed-spin Ising model.

The outline of this paper is as follows. In Section 2, the detailed description of
the layered Ising model of mixed spins is presented at first. Then, some details
of the decoration-iteration mapping are clarified along with the derivation of
exact expressions for the magnetization and critical temperatures. The most
interesting results are presented and detailed discussed in Section 3. Finally,
some concluding remarks are mentioned in Section 4.

2 Ising model and its solution

Let us define the mixed spin-1/2 and spin-S (S ≥ 1) Ising model on the layered
3D decorated lattice as it is diagrammatically depicted in Fig. 1. In this figure,
the solid circles denote lattice positions of the spin-1/2 Ising atoms that reside
sites of the simple cubic lattice and the empty ones represent lattice positions
of the decorating spin-S Ising atoms lying on each bond of the simple cubic
lattice. Let us further denote the total number of layers by the symbol NL and
the total number of the spin-1/2 atoms within each layer by the symbol N .
The model under investigation can be then defined through the Hamiltonian

H = −J
NL
∑

l=1

4N
∑

(i,j)

Sl,iσl,j − J ′
NL
∑

l=1

N
∑

j=1

σl,jσl+1,j − D
NL
∑

l=1

2N
∑

i=1

S2
l,i, (1)

where σl,j = ±1/2 and Sl,i = −S,−S + 1, . . . , +S are two different kinds of
Ising spins located in the lth layer at jth and ith lattice position, respectively.
The parameter J denotes the intra-layer interaction between the nearest-
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Fig. 1. Schematic representation of the mixed spin-1/2 and spin-S Ising model on the
layered 3D decorated lattice and of its decoration-iteration transformation towards
the simple spin-1/2 Ising model on the tetragonal lattice. Solid (empty) circles
denote lattice positions of the spin-1/2 (spin-S) atoms, while solid and broken lines
represent intra- and inter-layer interactions for both mixed-spin as well as effective
spin-1/2 Ising model, respectively.

neighbour spin-1/2 and spin-S atoms, the parameter J ′ labels the inter-layer
interaction between the nearest-neighbour spin-1/2 atoms from two adjacent
layers and the parameter D stands for axial zero-field splitting (AZFS) pa-
rameter that acts on the decorating spin-S atoms only [38,39].

The partition function of the layered mixed-spin Ising model, which is de-
fined through the Hamiltonian (1), can be written after straightforward re-
arrangement of some terms in the form

Z =
∑

{σl,j}

exp



βJ ′
NL
∑

l=1

N
∑

j=1

σl,jσl+1,j





×
NL
∏

l=1

2N
∏

i=1

S
∑

Sl,i=−S

exp
[

βJSl,i (σl,i1 + σl,i2) + βDS2
l,i

]

, (2)

where β = 1/(kBT ), kB is Boltzmann’s constant, T is the absolute temper-
ature and the symbol

∑

{σl,j} stands for a summation over all possible spin
configurations of the spin-1/2 atoms. It can be readily seen from the structure
of the relation (2) that the summation over spin degrees of freedom of the dec-
orating spin-S atoms can be performed independently of each other (there is
no direct interaction between the decorating spins) and before summing over
all possible spin configurations of the spin-1/2 atoms. Both these facts enable
us to introduce the generalized decoration-iteration transformation [2,3]

S
∑

Sl,i=−S

exp[βJSl,i(σl,i1 + σl,i2) + βDS2
l,i] = A exp(βJintraσl,i1σl,i2), (3)
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which effectively replaces all the interaction terms associated with the decorat-
ing spin Sl,i and substitutes them by the equivalent expression that depends
solely on its two nearest-neighbour vertex spins σl,i1 and σl,i2. Of course, the
decoration-iteration transformation must retain its validity regardless of possi-
ble spin states of both the nearest-neighbour vertex spins σl,i1 and σl,i2 and this
”self-consistency” condition unambiguously determines until now not specified
transformation parameters A and Jintra

A=











S
∑

n=−S

exp(βDn2) cosh(βJn)









S
∑

n=−S

exp(βDn2)











1/2

, (4)

βJintra = 2 ln





S
∑

n=−S

exp(βDn2) cosh(βJn)



− 2 ln





S
∑

n=−S

exp(βDn2)



 . (5)

At this stage, the substitution of the decoration-iteration transformation (3)
into Eq. (2) yields, after straightforward re-arrangement of few terms, the
following mapping relationship for the partition functions

Z(β, J, J ′, D) = A2NNLZtetragonal(β, Jintra, Jinter = J ′). (6)

It is quite obvious that the mapping relation (6) relates the partition function
of the layered Ising model on 3D decorated lattice to that one of the corre-
sponding spin-1/2 Ising model on the tetragonal lattice (see Fig. 1). Notice
furthermore that the effective intra-layer interaction Jintra of the corresponding
spin-1/2 Ising model on the tetragonal lattice is temperature dependent pa-
rameter satisfying the self-consistency condition (5), while the effective inter-
layer interaction Jinter is temperature independent parameter that is directly
equal to the interaction parameter J ′.

A calculation of the spontaneous magnetization and other thermodynamic
quantities can be now accomplished in an easy and rather straightforward
way. Adopting the mapping theorems developed by Barry et al. [40,41,42,43],
the sublattice magnetization mA relevant to the spin-1/2 atoms of the mixed-
spin Ising model on 3D decorated lattice directly equals to the magnetization
of the corresponding spin-1/2 Ising model on the tetragonal lattice

mA(β, J, J ′, D) ≡ 〈σl,i〉decorated = 〈σl,i〉tetragonal ≡ m0(β, Jintra, Jinter). (7)

Above, the symbols 〈. . .〉decorated and 〈. . .〉tetragonal denote canonical ensemble
averaging performed within the mixed-spin Ising model on the 3D decorated
lattice and its corresponding spin-1/2 Ising model on the tetragonal lattice,
respectively. On the other hand, the sublattice magnetization mB of the spin-S
atoms can easily be calculated by combining the exact Callen-Suzuki spin iden-
tity [44,45] with the differential operator technique [46,47]. It is noteworthy
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that this kind of mathematical treatment essentially follows Kaneyoshi’s pro-
cedure [48] originally developed for the decorated planar Ising models, which
connects the sublattice magnetization of the spin-S atoms with that one of
the spin-1/2 atoms through the relation

mB ≡ 〈Sl,i〉decorated = 2mA

S
∑

n=−S

n exp(βDn2) sinh(βJn)

S
∑

n=−S

exp(βDn2) cosh(βJn)

. (8)

To complete our calculation of both sublattice magnetization, it is now suf-
ficient to quote the analytic expression for the spontaneous magnetization of
the corresponding spin-1/2 Ising model on the tetragonal lattice, which can be
easily descended from Zhang’s putative exact solution for the spin-1/2 Ising
model on the orthorhombic lattice [36]

m0 =
1

2

[

(1 − x2 − x2y4 + x4y4)2 − 16x4y4

(1 − x2)2(1 − x2y4)2

]3/8

, (9)

where x = exp(−βJintra/2) and y = exp(−βJinter/2). If both sublattice mag-
netization are known, the total magnetization of the mixed-spin Ising model
on a 3D decorated lattice is given by the definition m = (mA + 2mB)/3.

Finally, let us conclude our calculation by specifying the critical condition that
thoroughly determines a critical point of the order-disorder phase transition of
the layered Ising model on 3D decorated lattice. It can be readily understood
that both sublattice magnetization mA and mB tend necessarily to zero if the
spontaneous magnetization m0 of the corresponding spin-1/2 Ising model on
the tetragonal lattice vanishes as well. Accordingly, the critical condition that
enables to locate the order-disorder phase transition of the mixed-spin Ising
model on 3D decorated lattice can also be readily found from Zhang’s critical
condition for the spin-1/2 Ising model on the orthorhombic lattice [36], which
contains as a particular case the following critical condition for the spin-1/2
Ising model on the tetragonal lattice

sinh

(

βcJintra

2

)

sinh

(

βcJintra

2
+ βcJinter

)

= 1, (10)

where βc = 1/(kBTc) and Tc denotes the critical temperature. It should be nev-
ertheless mentioned that the above critical condition thoroughly determines
a critical behaviour of the layered Ising model of mixed spins on assumption
that the effective intra-layer interaction Jintra satisfies the mapping relation
(5) and the effective inter-layer interaction is equal to Jinter = J ′.
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3 Results and discussion

In this part, let us proceed to a discussion of the most interesting results ob-
tained for the layered Ising model on 3D decorated lattice. Before doing this,
it is worthy to mention that all analytical results presented in the preceding
section are rather general as they hold for arbitrary quantum spin number S
of the decorating spins and also independently of whether ferromagnetic or
antiferromagnetic interactions J and J ′ are assumed. In what follows, we will
restrict ourselves for simplicity just to an analysis of one particular example
of the layered Ising model by considering both ferromagnetic interaction con-
stants J > 0, J ′ > 0, and the special spin value S = 1. It is worthwhile to
remark, however, that the qualitatively same behaviour might be expected for
the layered Ising models with other integer values of the decorating spins as
well. Besides, the presented zero-field phase diagrams should remain valid also
for layered Ising models with the antiferromagnetic interaction(s) J and/or
J ′ due to an invariance of Ising spin systems with respect to J → −J and
J ′ → −J ′ interchange that merely causes a rather trivial change of the ferro-
magnetic (J > 0, J ′ > 0) alignment to the metamagnetic (J > 0, J ′ < 0), the
ferrimagnetic (J < 0, J ′ > 0), or the antiferromagnetic (J < 0, J ′ < 0) one.

Let us begin our discussion by considering possible spin arrangements emerg-
ing in the ground state. It turns out that three different phases may ap-
pear in total at the zero temperature in dependence on a relative strength
of the intra-layer interaction J , the inter-layer interaction J ′, and the ax-
ial zero-field splitting parameter D. The AZFS term D plays the role of the
anisotropy parameter that forces all decorating spins S = 1 towards their
’non-magnetic’ spin state Sl,i = 0 provided that this parameter is a suffi-
ciently large negative number. The usual ferromagnetic phase (FP), which can
be characterized through the following spin states of the decorating and ver-
tex spins (Sl,i; σl,i) = (1; 1/2), consequently represents the lowest-energy state
just if D/J > −1. On the other hand, the striking ’quasi-1D’ ferromagnetic
phase (QFP) constitutes the ground state in a range of intermediate strong
anisotropy parameters D/J ∈ (−1−J ′/J,−1), where it exhibits an outstand-
ing spontaneous long-range order unambiguously determined through the spin
states (Sl,i; σl,i) = (0; 1/2). The absence of any spontaneous long-range order
can finally be detected in the disordered phase (DP), which is the lowest-
energy state on assumption that D/J < −1 − J ′/J . In this particular case,
the sufficiently strong (negative) AZFS parameter energetically favours the
’non-magnetic’ spin state Sl,i = 0 of the decorating spins and hence, there
appears the spin state (Sl,i; σl,i) = (0;±1/2) with a complete randomness in
the states of the vertex spins (the vertex spins from the same layer do not
effectively feel each other). The most surprising finding stemming from the
study of the ground state is a pure existence of QFP, which exhibits a remark-
able spontaneous long-range order in spite of the ’non-magnetic’ nature of the
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Fig. 2. Typical temperature dependences of the effective intra-layer coupling βJintra

obtained for several values of the anisotropy parameter D/J (Fig. 2a). Note that
βJintra is given by the mapping relation (5) and it does not depend on a strength of
the inter-layer interaction J ′. Fig. 2b) displays in a semi-logarithmic scale a graph-
ical solution of the critical condition (10). Solid (broken) lines depict temperature
dependences of the left-hand-side (right-hand-side) of the critical condition (10)
for several values of the parameter D/J and the ratio J ′/J = 0.2. The points of
intersection between broken and solid lines (full circles) determine critical points.

decorating spins and the effectively ’quasi-1D’ character of the spin system.

To provide a deeper insight into the mechanism that drives the spin system
into one of those three available spin states, it might be useful to take a closer
look at the effective coupling parameters βJintra and βJinter of the correspond-
ing spin-1/2 Ising model on the tetragonal lattice. The effective inter-layer
coupling βJinter = J ′/(kBT ) is evidently monotonously decreasing function
of the temperature, which diverges as T−1 when approaching the zero tem-
perature. By contrast, the effective intra-layer coupling βJintra exhibits much
more complex thermal variations, which are for better illustration depicted
in Fig. 2a) for several values of the AZFS parameter D/J . It can be directly
proved from the definition (5) that βJintra diverges as T−1 when reaching the
zero temperature either according to the law βJintra = 2J/(kBT ) valid for
D/J > 0, or according to the formula βJintra = 2(D + J)/(kBT ) valid for
D/J ∈ (−1, 0). Furthermore, the effective intra-layer coupling tends towards
the constant value βJintra = ln 4 when approaching the zero temperature for
the special case D/J = −1, while it exponentially goes to zero by follow-
ing the law βJintra = 2 exp[(D + J)/(kBT )] in the region D/J < −1. Notice
that all aforedescribed features can also be clearly seen in the dependences
shown in Fig. 2a). This rather comprehensive analysis of the effective intra-
layer coupling demonstrates that there does not exist (at least at the zero
temperature) any effective intra-layer interaction between the spin-1/2 atoms
if D/J < −1 and thus, the spin-1/2 atoms from the same layer should become
completely independent of each other under this condition. This reasoning
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would have a simple physical explanation, since the relative strength of AZFS
parameter D/J = −1 is just as strong as to make energy balance between the
’non-magnetic’ (Sl,i = 0) and magnetic (Sl,i = 1) spin state of the decorating
spins and accordingly, all vertex spins should be effectively separated by the
’non-magnetic’ decorating spins Sl,i = 0 whenever D/J < −1.

Bearing all this in mind, one would intuitively expect that the layered Ising
model on 3D decorated lattice must be disordered at any finite temperature
when D/J < −1. Under this assumption, the only non-zero term at the zero
temperature is the effective inter-layer interaction Jinter = J ′ and the layered
Ising model on 3D decorated lattice should therefore break into a set of the in-
dependent spin-1/2 Ising chains (running perpendicular to the layers) that do
not possess a finite critical temperature. However, the mathematical structure
of the critical condition (10) indicates a little bit more involved situation. The
spin system is spontaneously ordered if the product on the left-hand-side of
the critical condition (10) is greater than unity, while the spin system becomes
disordered if it is less than unity. Thus, there exists a possibility that the prod-
uct on the left-hand-side of the critical condition (10) might be greater than
unity despite zero value of the effective intra-layer coupling, for instance, if a
divergence of the effective inter-layer coupling βJinter overwhelms the asymp-
totic vanishing of the intra-layer coupling βJintra. One actually finds in the
zero temperature limit (T → 0 or equivalently β → ∞) that

lim
β→∞

[

sinh

(

βJintra

2

)

sinh

(

βJintra

2
+ βJinter

)]

=
{∞ if D

J
> −1 − J ′

J

0 if D
J

< −1 − J ′

J

,

which means that the spontaneous order disappears only at D/J = −1−J ′/J
notwithstanding the simple intuitive expectations given above. Among other
matters, this argument might serve in evidence of the outstanding spontaneous
long-range ordering QFP that emerges in a range of the intermediate strong
anisotropy parameters D/J ∈ (−1 − J ′/J,−1) despite the ’non-magnetic’
nature of all decorating spins. For better illustration, Fig. 2b) shows in a
graphical form several temperature dependences of the left-hand-side of the
critical condition (10), which confirm correctness of the aforedescribed analysis
for one particular value of the ratio J ′/J = 0.2. It is noteworthy that this figure
can also be regarded as a graphical solution of the critical condition (10) that
determines a critical point of the layered Ising model on 3D decorated lattice
as an intersection of both sides of the critical condition (10).

The finite-temperature phase diagram in a form of the dependence critical
temperature vs. the anisotropy parameter D/J , which was obtained as a nu-
merical solution of the critical condition (10), is shown in Fig. 3 for several val-
ues of the interaction ratio J ′/J between the inter- and intra-layer interaction
constants. It can be clearly seen from this figure that the critical temperature
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Fig. 3. The critical temperature as a function of the AZFS parameter D/J for
several values of the ratio J ′/J between the inter- and intra-layer interactions. The
vertical line at D/J = −1.0 separates the displayed critical lines into two different
regions that correspond to the FP (D/J > −1.0) and QFP (D/J < −1.0).

monotonically decreases with a decrease of the AZFS parameter D/J until it
finally reaches the zero temperature at the boundary value D/J = −1−J ′/J ,
which is consistent with the one predicted by the ground-state analysis. The
monotonic decrease of the critical temperature that occurs upon decrease of
the AZFS term can simply be attributed to energetic favouring of thermal
excitations to the ’non-magnetic’ spin state Sl,i = 0. In addition, the vertical
line at D/J = −1 must formally divide the depicted critical lines into two dif-
ferent region: the part on the right (i.e. for D/J > −1) is in fact a collection
of the critical points that corresponds to the FP, while the part on the left
(i.e. for D/J < −1) must correspond to the critical points of the QFP.

To provide an independent check of the aforementioned scenario, it might be
quite useful to take a look at thermal dependences of the total and sublattice
spontaneous magnetization. For this purpose, temperature variations of the
total and sublattice magnetization are displayed in Fig. 4 for the particular
value of the interaction ratio J ′/J = 0.2 and several values of the anisotropy
parameter D/J . Fig. 4a) shows thermal dependences of the total and sub-
lattice magnetization, which are typical for D/J & 0 and which lead to the
most common Q-type temperature dependence of the total magnetization.
On the other hand, the S-type temperature dependence of the total magne-
tization can be observed on assumption that the AZFS parameter is slightly
greater than the boundary value D/J = −1 [see Fig. 4b) for D/J = −0.9].
The stair-like S-shaped dependence with a rapid initial decrease of the to-
tal magnetization obviously appears owing to preferred thermal excitations of
the decorating spins to the ’non-magnetic’ spin state Sl,i = 0. Namely, these
thermal excitations are also reflected in the temperature dependence of the
sublattice magnetization mB and the ’non-magnetic’ spin state Sl,i = 0 is close
enough in energy to the spin state Sl,i = 1 to emerge in the ground state un-
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Fig. 4. Thermal dependences of the total magnetization m (solid lines) and the
sublattice magnetization mA (dashed lines), mB (dotted lines) for the fixed value
of the interaction ratio J ′/J = 0.2 and several values of the AZFS parameter D/J .

der this condition. Interestingly, the standard thermal dependences of Q-type
are recovered for the total and both sublattice magnetization by selecting the
boundary value D/J = −1 (see Fig. 4c). It is worthwhile to remark, neverthe-
less, that the sublattice magnetization mB pertinent to the decorating spins
starts in this particular case from one half of its saturation value on behalf
of the energetic equivalence between the spin states Sl,i = 0 and Sl,i = 1,
which are populated with the same probability. Last but not least, the in-
teresting L-type dependence of the total magnetization can be found for the
anisotropy parameters D/J < −1 as depicted in Fig. 4d) for the particular
case D/J = −1.1. As one can see from this figure, the sublattice magnetiza-
tion mB of the decorating spins starts from zero and this might be regarded as
another convincing evidence of the existence QFP. Besides, the temperature-
induced increase of the total magnetization evidently comes from the relevant
thermal excitations of the decorating spins, which are clearly reflected in the
thermal behaviour of the sublattice magnetization mB. In agreement with this
suggestion, the observed temperature-induced increase of the magnetization is
the more robust, the closer is the anisotropy parameter D/J to the boundary
value D/J = −1, i.e. the closer in energy is the excited magnetic spin state
Sl,i = 1 to the ’non-magnetic’ spin state Sl,i = 0 emerging in the ground state.

Finally, we have also performed a rather detailed analysis of the critical be-
haviour by investigating critical exponents of the layered Ising model on 3D
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Fig. 5. The sublattice magnetization mA versus the reduced temperature in a vicin-
ity of critical points for J ′/J = 0.2 (Fig. 5a) and 0.01 (Fig. 5b). The different
symbols represent the magnetization vs. temperature data calculated for different
anisotropy parameters D/J and the solid lines illustrate the best fit by linear curve
with the slope (critical exponent) β = 3/8.

decorated lattice. It turned out that the investigated model system possesses
the universal critical exponents, which are independent of the interaction pa-
rameters J , J ′, and D. This means that the same set of critical exponents
characterizes the critical behaviour of the layered Ising model on 3D deco-
rated lattice regardless of whether the standard FP or the unusual QFP is
being the ground state. This fact becomes quite evident from Fig. 5, where
the spontaneous magnetization mA is plotted in a logarithmic scale against the
reduced temperature for two different values of the interaction ratio J ′/J and
several values of the anisotropy parameter D/J . Apparently, the temperature
variations of the spontaneous magnetization are in a vicinity of a critical point
well fitted by the linear curves, which have the same critical exponent (slope)
β = 3/8 irrespective of whether the FP (D/J > −1) or the QFP (D/J < −1)
constitutes the ground state.

4 Conclusions

In the present work, the critical behaviour and magnetic properties of the lay-
ered Ising model of mixed spins on 3D decorated lattice are investigated by
the use of generalized decoration-iteration transformation, which establishes
a precise mapping relationship between the investigated model system and
the corresponding spin-1/2 Ising model on the tetragonal lattice. It should
be mentioned that recent conjectures on the exact solution of the spin-1/2
Ising model on the orthorhombic lattice [36], which contains as a special case
the exact solution of the spin-1/2 Ising model on the tetragonal lattice, have
enabled us to get accurately the critical and thermodynamic properties of the
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layered Ising model by maintaining essentially analytical form of the calcu-
lated quantities. In particular, the ground-state and finite temperature phase
diagrams have been studied along with the possible temperature dependences
of the total and sublattice magnetization.

The most interesting finding presented in this work surely represents a theo-
retical prediction of the striking spontaneous long-range ordering QFP, which
appears in spite of the ’non-magnetic’ nature of all decorating spins and the
effectively ’quasi-1D’ character of the spin system. It should be pointed out,
however, that the analogous spontaneous long-range order of the effectively
’quasi-1D’ spin system have already been exactly confirmed in the mixed-spin
Ising model on a decorated square lattice with two different kinds of deco-
rating spins on the horizontal and vertical bonds [49,50]. This noticeable and
rather surprising coincidence can readily be understood from the mathemat-
ical structure of the critical condition (10), since the condition (10) of the
spin-1/2 Ising model on the tetragonal lattice (10) formally coincides with the
Onsager’s critical condition [51] derived for the spin-1/2 Ising model on the
anisotropic square (rectangular) lattice to which the mixed-spin Ising model
on anisotropically decorated square lattice is effectively mapped [49,50].

Finally, it is worthwhile to remark that the presented exact solution can be
rather straightforwardly extended to account for several additional interaction
terms not included in the Hamiltonian (1) such as the biaxial zero-field split-
ting parameter acting on the decorating spins, the next-nearest-neighbour
interaction between the vertex spins, the multispin interaction between the
decorating spin and its two nearest-neighbour vertex spins and so on. In addi-
tion, the Zhang’s putative exact solution for the spin-1/2 Ising model on the
orthorhombic lattice [36] might be used to obtain accurate results for a whole
set of the exactly solvable Ising models on 3D decorated lattices as well.
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[8] T. Horiguchi and L. L. Gonçalves, Physica 120A (1983) 600.
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