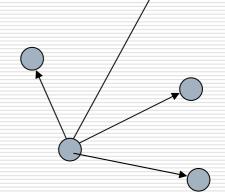
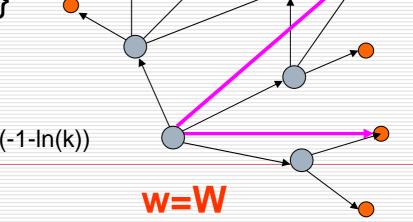
Evolutional model

- 1. Initialization: p(d)=c;
- 2. Evolution:

 a. delete friend
 rule: min{dE/dis}
 b. add friends
 rule: max{dE/dis}



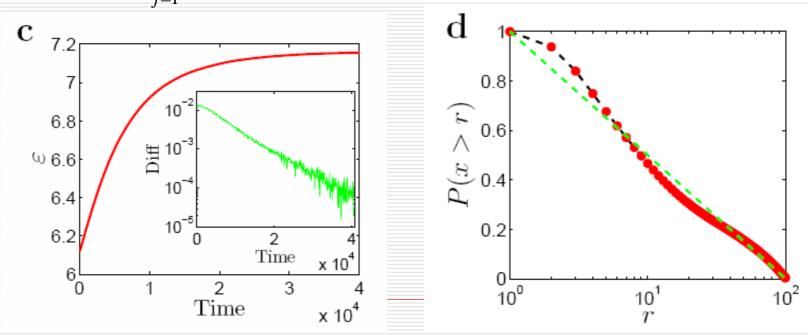


q is the rank of dE/dis, then p(dE/dis)~q^(-1-ln(k)) (2001 PRL)

Maximization of Entropy

$$\max \quad \varepsilon = -\sum_{i=1}^{n} p_i \ln(p_i)$$

st.
$$\sum_{j=1}^{m} d(1, j) = w$$



Theoretical Analysis

 $OR \quad w = \frac{f \cdot L}{\log L}$ w = cL $\alpha < 1 \quad \lim_{L \to \infty} E(\varepsilon_{\alpha}) = \log(\frac{c(2-a)}{1-a} + [\frac{c(2-a)}{1-a}]^2)$ $\alpha > 1 \qquad \lim_{L \to +\infty} E(\varepsilon_{\alpha}) = \frac{(a-1)(2\log 2 + \log Z(a)) + a + 1}{2(a-1)^2}$ $P(r) \propto r^{-\alpha}$

 $P(r) \propto r^{-1}$ is the optimal distribution

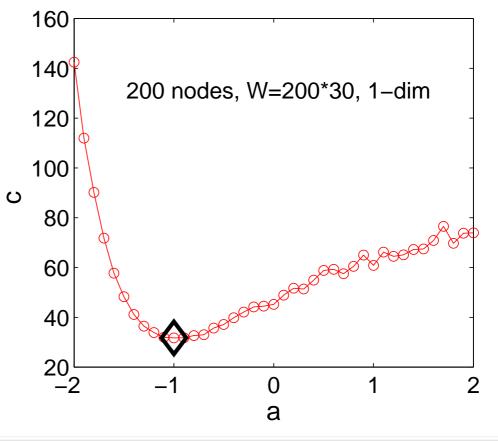
Investigating Its Effects

Traffic Dynamics

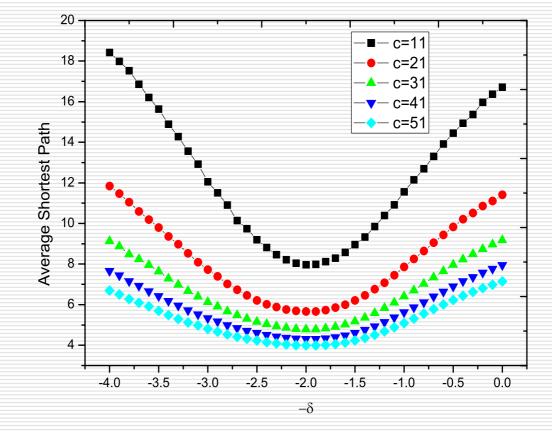
Synchronization

Synchronizability

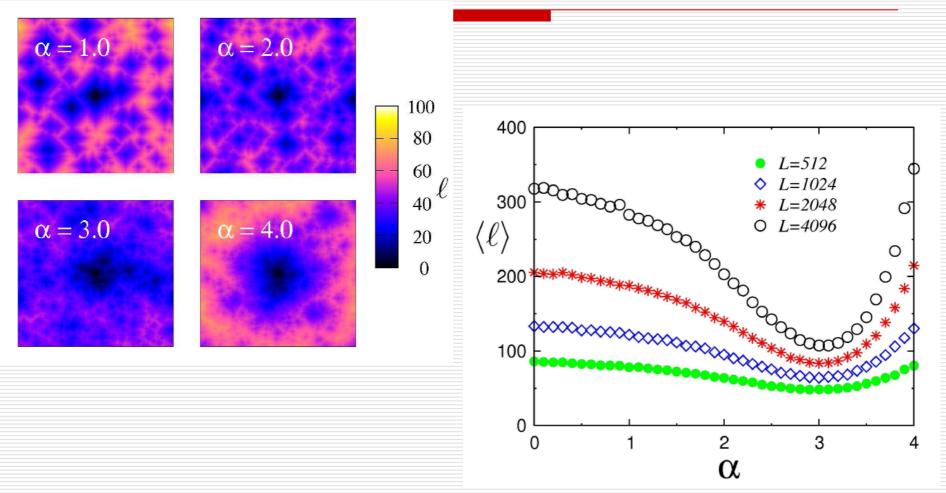
$$R=\lambda_N/\lambda_2$$



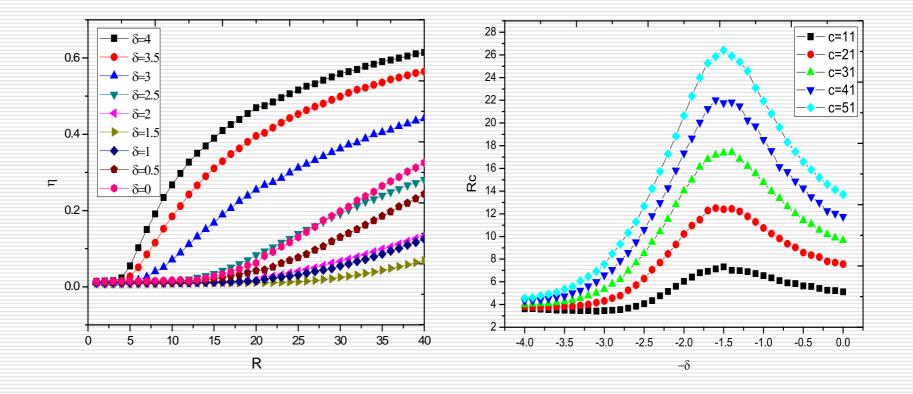
Topology and Traffic Dynamics



Designing optimal transport networks G. Li, S. D. S. Reis, A. A. Moreira, S. Havlin, H. E. Stanley, and J. S. Andrade Jr., arXiv:0908.3869v1 [physics.soc-ph]



Traffic Dynamics



Epidemic Process and Mobility

Viewpoint

Epidemic spreading always follow the mobility of animal or human.

Previous works focus on the effects of topology on epidemic process

We want to establish a network model with a Levy flight spatial structure.

How does the mobility pattern impact on epidemic Process?

Mobility Pattern

Pattern: most of the studies on animal and human mobility pattern including experimental data and theoretic analysis found that their mobility pattern follow the Levy flight:

 10^{2}

r (km)

10-1

 10^{-2}

€10-3

 10^{-4}

10-5

 10^{0}

£ 10-

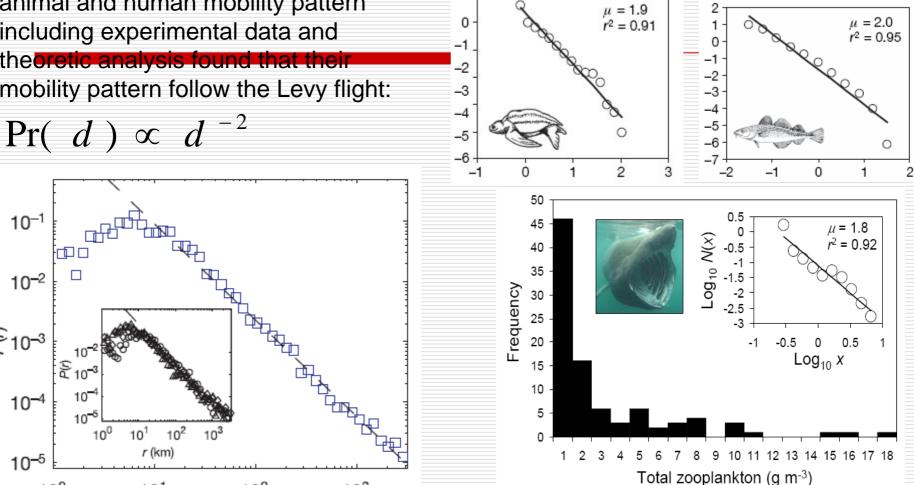
10^{-%}

10⁰

10¹

r (km)

10¹



d

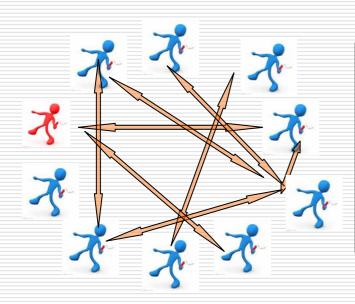
Scaling laws of marine predator search behaviour, Nature (2008)

 10^{2}

D. Brockmann, L. Hufnagel and T. Geisel, The scaling laws of human travel, Nature, 439, 462-465, (2006).

10³

Spatial Network with Levy Flights Properties



1. Each node denotes a small group of people.

2. Each node has limited energy.

3. The weight of edge means the expectation of contacting times.

Weighted Network with Levy Flight Spatial Structure

Step1. Given a regular ring with *n* nodes and a restriction on total energy $\Omega = w \times n$

Step2. For $\forall i, j \ p(i, j) \sim d(i, j)^{-\alpha}$

Step3. (Normalization) p(i, j)

$$j) = \frac{d(i, j)^{-\alpha}}{\sum_{d \in D(n)} d^{-\alpha}}$$

then we get a probability matrix P_{utm} ,. **Step4. (Weighted matrix)** $m = \Omega / E(d)$ Weighted matrix $W = mP_{utm}$ and $w_{ij}(j > i)$ is related with the times of contacts c_j between node i, j

SI Model

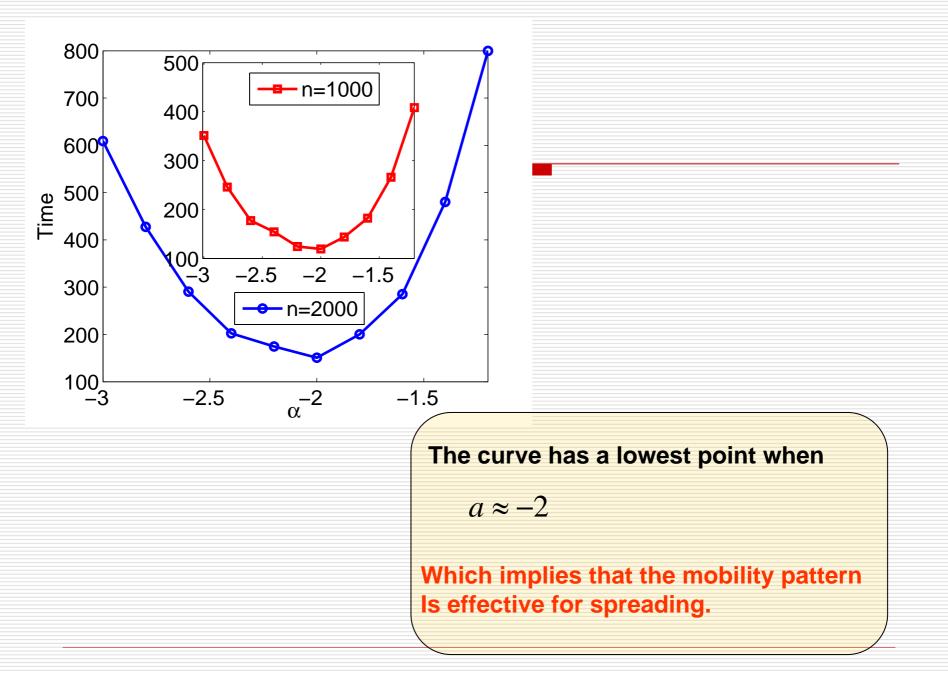
Step1. Randomly choose one node as an infected individual, others are susceptible.

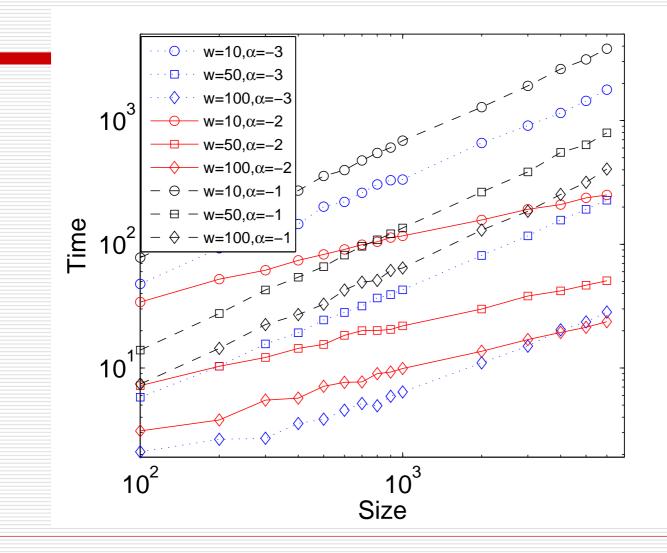
Step2. For each susceptible node, it will be infected with a probability $\sum_{\substack{i=1,\dots,i\\ 1-(1-r)}} w_{ki}$

where j are infected nodes, and r indicated the effective infection rates .

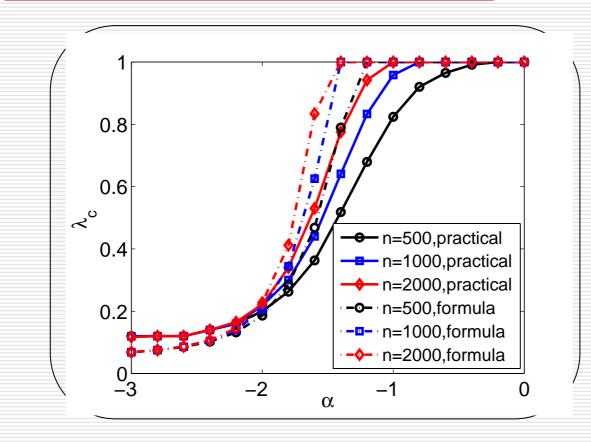
Step3. Repeat the step 2

Step4. Terminate until 80% of the nodes are infected.





SIS Model



Summary

- 1, The distance distribution between friends is scale invariant-- $P(d) \sim d^{-1}$ which is an important and universal property for social networks. Some Other networks show also Scaling Law in spatial properties.
- 2, For Scaling Law in social networks, it may result from the maximization of entropy and can benefit individuals for collecting information.
- 3, Spatial Scaling properties has some important effects on dynamics, e.g. synchronization, traffic dynamics, epidemic spreading on networks.

Thank you!