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Their small sizes have meant that the Arabidopsis and rice
genomes are the best-studied of all plant genomes. Although
even closely related plant species can show large variations in
genome size, extensive genome colinearity has been
established at the genetic level and recently also at the gene
level. This allows the transfer of information and resources
assembled for rice and Arabidopsis to be used in the genome
analysis of many other plants.
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Abbreviations
cM centi Morgan
RFLP restriction fragment length polymorphism

Introduction
Molecular markers are widely used to study the organisa-
tion of plant genomes, and genetic linkage maps based on
molecular markers have been assembled for many differ-
ent plant species. Restriction fragment length
polymorphism (RFLP) markers are cDNA, gene or ran-
dom DNA sequences, which can reveal restriction-site
polymorphisms in the DNA of different individuals in a
genomic DNA blot hybridisation [1]. The high conserva-
tion of gene sequences during evolution allows the use of
RFLP markers derived from one species in genetic map-
ping experiments in closely related species. The use of the
same set of RFLP markers for genetic mapping in related
species can lead to the construction of comparative genet-
ic maps of these species. Such experiments reveal the
degree of conservation of gene repertoire and order of
markers between different species (Figure 1).

A limited number of markers are usually used for compar-
ative genetic experiments; this confines the information
gained from comparative genetic mapping experiments to
the gross chromosomal organisation. Information about
areas of the chromosomes that lie between the markers can
be obtained only by cloning and characterising these
regions in detail. Comparative physical mapping and
sequencing experiments can highlight the extent to which
local gene order, orientation and spacing are conserved
between species (Figure 2).

Given a high degree of genome colinearity at a broader
genetic level as well as at the gene level, comparative
genome mapping experiments can serve as an efficient tool
for transferring information and resources from well-studied

genomes, such as those of Arabidopsis and rice, to related
plants. With this prospect in mind, comparative genome
analysis studies have been focussed on the Brassicaceae
and the Poaceae families.

Comparative genetic mapping experiments
The first comparative genetic mapping experiments in
plants were performed on members of the Solanaceae fam-
ily. Tomato, potato and pepper share the same
chromosome number, although their genome sizes show a
two-fold to four-fold variation. These experiments estab-
lished that most markers are well conserved between
potato and tomato; moreover, an extensive conservation of
marker order was found [2,3]. Differences in marker organ-
isation on the 12 tomato and potato chromosomes were
explained by five chromosomal inversions [4]. A high con-
servation of gene repertoire was also found in a comparison
of the tomato and pepper genomes [5,6]. A minimum of 22
chromosome breaks had, however, to be assumed to
account for the differences in marker arrangement on the
tomato and pepper chromosomes. Both inversion and
translocation events have been implicated in the genome
rearrangements [6].

A remarkable degree of genome conservation has been
established in comparative genetic mapping experiments
for the Poaceae family, although genome sizes vary as
much as 40-fold between some of the species, and despite
the fact that they diverged as long as 60 million years ago
[7••]. Genetic mapping experiments in allohexaploid
wheat revealed that most gene sequences are triplicated on
the A, B and D genomes. Furthermore, the three sets of
the seven homeologous chromosomes show overall colin-
earity. Evidence of a few translocation events was,
however, also found [8]. Within the Triticeae tribe, exten-
sive colinearity was established, for example, for the
homeologous chromosomes of wheat, Triticum monococcum,
Triticum tauschii and barley, and consensus maps were
developed [9,10]. Multiple rearrangements distinguish the
rye and Aegilops umbellulata genomes from the wheat
genome [8,11].

Species belonging to the tribe Andropogonae (e.g. maize,
sorghum and sugarcane) have also been studied intensive-
ly. Maize probes cross-hybridize strongly with sorghum
and sugarcane DNA; the first conserved linkage arrange-
ments between sorghum and maize were detected as early
as 1990 [12]. The three species display a high degree of
genome colinearity, with the sorghum and sugarcane
genomes showing the more similar chromosome organisa-
tion [13–15]. Most of the sorghum–sugarcane synteny
groups show homology to two different regions in the
maize genome. These closely match areas of the
maize genome, which have previously been shown to be
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duplicated [16]; this is consistent with the view that maize
is of tetraploid origin.

Comparative genetic mapping experiments with rice,
wheat and maize indicated that genome colinearity is
observed even in species belonging to different subfami-
lies of the Poaceae [17]. A close examination of data for the
rice, maize and wheat genomes revealed conservation of
gene order for 19 distinct rice linkage segments, which
make up the 12 rice chromosomes [18]. These linkage seg-
ments can describe the marker arrangement on the 7
wheat and 10 maize chromosomes.  The tetraploid nature
of the maize genome is also highlighted in this representa-
tion, because each of the rice linkage segments
corresponds to two different maize chromosomes [18]. The
concept of describing colinearity on the basis of rice link-
age segments has been very fruitful and has made it
possible to make multiple alignments of chromosome
maps for the foxtail millet, oats, pearl millet, maize, rice,
sugarcane, sorghum and Triticeae genomes [7••]. The
inclusion of more markers and particularly sets of markers,
which show good correspondence to many different
genomes in the colinearity studies [19•], will refine and
clarify colinearity relationships [20]. 

Most importantly, the recognition of putative orthology of
monogenic or quantitative traits across different species is
facilitated by comparative mapping experiments [21]. This
has been elegantly documented by the mapping and
cloning of homologues of the Arabidopsis GAI gene that
encode a gibberellin-response modulator from maize, rice
and wheat. Both the wheat and maize genes correspond to
dwarf loci [22••]. Similar studies were performed with
pathogen resistance gene homologues; in these cases, how-
ever, resistance-gene-like sequences were frequently
found in non-syntenic map positions [23]. This finding can
be explained by rapid reorganisation of regions encoding
resistance genes [23].

The aligned maps can be exploited to identify many dif-
ferent markers from a variety of species for a given
genomic region. This is especially useful for fine-scale
mapping or map-based cloning experiments. Such experi-
ments also detect minor rearrangements, which can disturb
the overall colinearity [24,25,26•].

In the Brassicaceae family, the Brassica species have been
thoroughly studied using comparative genetic mapping
experiments. An almost complete conservation of gene
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Patterns of genome colinearity. The use of the same set of molecular
markers (A–P) for genetic mapping experiments in different species
allows the alignment of the resulting chromosome maps. In the left part
of the figure, two chromosome maps (I and 1) are shown, which are
completely colinear. The central part of the figure outlines the case in
which a chromosome from a particular species (I) shares colinear
segments with several chromosomes of another species (1–3)
indicating translocation events. Inversions of entire chromosome arms

or smaller chromosomal segments are also frequently observed in
comparative genetic mapping experiments. If a diploid and a tetraploid
species are compared, markers will generally reveal two loci in the
tetraploid species. In the right part of the figure, chromosomes 1 and 2
of a tetraploid species are aligned with chromosome I of the diploid
species. Depending on the degree of polymorphism between the two
species analysed, not all of the markers will reveal two different loci in
the tetraploid species, as indicated for example for markers B and N.
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repertoire was found. In spite of similar genome sizes,
Brassica oleracea, Brassica rapa and Brassica nigra display
different chromosome numbers, and their genomes are
distinguished by multiple rearrangements. The mapping
experiments also revealed extensive duplications, with
many of the chromosomal segments being present in
three copies [27]. The view that genomes of species
belonging to the Brassicaceae are distinguished by a large
number of translocations and inversions has been further
corroborated by genome-wide comparative genetic map-
ping experiments of Arabidopsis thaliana and B. oleracea.
Colinear segments spanning 3.7–49.6 centi Morgans (cM)
were found [28]. A detailed comparison of the A. thaliana
and B. nigra genomes suggests that ~90 rearrangements
have taken place since the divergence of these two
species; the average length of the colinear segments was
estimated at 8 cM. Estimates of divergence time for these
species vary widely from 10 to 35 million years; neverthe-
less, the observed rate of chromosomal rearrangements
distinguishing the A. thaliana and B. nigra genomes is far
higher than the values that have been observed in the
Poaceae family [29••]. Comparing the A. thaliana with the
Brassica genomes further substantiated the view that the
modern diploid Brassica species have descended from a
hexaploid ancestor [28,29••,30•,31,32]. 

Microcolinearity
The extensive genome colinearity established in compara-
tive genetic mapping experiments has raised the question
of whether such a high degree of colinearity is also found
at the level of genes. This has been addressed by charac-
terising and comparing small genomic regions in rice,
maize and sorghum [33]. This work revealed that the sh2
and a1 genes are physically closely linked in all three
species but the distances between the genes vary widely.
In maize, sh2 and a1 are separated by ~140 thousand base
pairs (kbp), whereas in sorghum and rice, they are only
19 kbp apart. Two tandemly repeated copies of the A1
gene were discovered in sorghum. In contrast, in maize
and rice only a single copy of this gene was found in the
analysed regions [33]. Comparative sequence analysis of
these rice and sorghum regions demonstrated that high
degrees of sequence homology between the genomes are
limited to exon sequences [34]. It has been noted that this
feature can be exploited to identify gene sequences in
complex genomes efficiently because only such sequences
will cross-hybridise with DNA from related species,
whereas repetitive DNA sequences are largely species-
specific [35]. A high degree of microsynteny was also
found in a comparison of the adh region of maize and
sorghum [36••]. Nine candidate genes were discovered in
a 225 kbp maize sequence. The homologues in sorghum
were found in the same order as in maize but in a region
spanning <80 kbp. Despite the smaller size of the sorghum
adh region, evidence of five additional genes was detected.
The presence of many retrotransposons causes the maize
adh region to be larger than that of sorghum [36••]. A sim-
ilarly detailed study comparing the 22 kDa α-zein cluster

in sorghum and maize lead to the same conclusions [37].
Hence, repetitive elements located amid genes contribute
considerably to the four-fold difference in the genome
sizes of sorghum and maize.

Microcolinearity was also revealed when receptor-like
kinase genes were studied in wheat, barley and rice. These
genes were tightly clustered: even in the large wheat and
barley genomes the gene density in these regions is as high
as that generally found in the Arabidopsis genome [38•]. 

So far, microsynteny studies in the Brassicaceae have been
performed mainly with comparative physical mapping
studies. Genetic and physical mapping of a set of five
genes (which are located on a 15 kbp segment of
A. thaliana chromosome 3) in B. rapa, B. oleracea and
B. nigra showed that the five gene sequences were physi-
cally closely linked in a single linkage-group in all three
Brassica species. Additionally, one or two incomplete clus-
ters were found in all three species [39]. The same strategy
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Figure 2

Patterns of microsynteny. A comparative analysis of orthologous
genomic regions derived from different species (I–III) at the sequence
level reveals a high conservation of gene sequences, which are
indicated as black boxes (A–F). In contrast, intergenic sequences do
not show significant homologies. Evidence for deletions and
duplications of gene sequences have been observed in microsynteny
studies; these cases are illustrated in the figure. Gene E is deleted in
species III, whereas species I harbours two copies of gene C.
Comparison of the arrangement of genes in species differing in genome
size (species II and III) shows that some of the differences in genome
size can be attributed to size differences in the intergenic regions.
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has been used to compare the organisation of a 30 kbp seg-
ment of A. thaliana chromosome 4, which carries six genes
with the corresponding regions in B. nigra [40]. One region
carrying all six genes was documented; however, this
genome segment was considerably larger in B. nigra than in
A. thaliana. Additional partial clusters were found in the
B. nigra genome [40].

A detailed comparison of the S locus region from Brassica
campestris with the homeologous region in A. thaliana
revealed extensive colinearity at scales smaller than a mil-
lion base pairs, as well as evidence for small deletions
[41•]. Three of the 21 A. thaliana genes that map to this
275 kilobase-pair region did not, however, hybridise with
B. campestris DNA, and no evidence for the presence of the
B. campestris SLG and SRK genes was found in A. thaliana.
Additional copies of this genomic region were not detect-
ed in the B. campestris genome [41•].

The characterisation of loci corresponding to an A. thaliana
segment that carries the RPM1 pathogen resistance gene
flanked by two putative genes, GTP and M4, in B. napus,
revealed the presence of six loci, only two of which con-
tained a copy of RPM1. All B. napus loci displayed similar
sizes to that of the A. thaliana locus. The data suggest that
RPM1 has been lost by deletion from two of the triplicated
loci in the diploid Brassica progenitor [30•].

So far, large duplicated segments have not been studied in
great detail in Brassica species, so an overall assessment of
the colinearity of duplicated segments cannot be given.
The data obtained so far do, however, suggest the frequent
occurrence of inversions and deletions [30•,31,32,39,40].

In some genomic regions, the Brassica and Arabidopsis
homeologous segments are very similar in size, whereas in
other areas the size of the Brassica homeologue is drasti-
cally increased in comparison with its Arabidopsis
counterpart [30•,39,40,41•]. Nevertheless, genome colin-
earity is extensive enough to permit the transfer of a lot of
information and resources, which have been assembled in
the framework of the Arabidopsis genome project, to
Brassica relatives. For example, loci controlling flowering
time in Brassica are being characterised by exploiting infor-
mation on the Arabidopsis genes that are involved in this
mechanism [31,42,43].

Conclusions
In the past few years, many comparative genetic mapping
experiments have revealed extensive genome colinearity
between plant species belonging to the same family. More
recently, microsynteny studies have confirmed that colin-
earity is also generally observed at the level of genes. Thus,
the exploitation of genome colinearity can aid fine-mapping
and map-based cloning experiments in many plant species,
especially in crop plants that have large genomes. The
genetic mapping of agronomically interesting loci is per-
formed in the species with the large genome, and cloning is

then performed using information from closely related
model organisms for which ample genomic resources have
been established. More information on different genomic
areas is, however, needed because, for example, the study of
pathogen resistance-like genes suggests that the rapid
reorganisation of genomic regions can result in non-syn-
tenic map positions for interesting loci.

The microsynteny studies are providing invaluable infor-
mation on genome organisation. The few case studies
undertaken so far indicate that different areas of the
genome might show distinct organisational patterns with
regard to gene density. The revelation of more information
about the structure of large as well as duplicated plant
genomes is particularly important because this might pro-
vide new avenues for the study of complex genomes. 

In the vast majority of cases, comparative mapping experi-
ments have studied species belonging to the same family.
Although initial observations indicate that synteny might
be extrapolated to more distantly related species [44],
these experiments are hampered by the low degree of
sequence homology between distantly related species.
Although highly conserved gene sequences can be used for
the cross-hybridisation experiments, they limit the source
of suitable markers for such experiments and consequent-
ly a lot of putative conserved linkages might escape
detection. Attempts to establish colinearity between the
rice and Arabidopsis genomes suggest that colinearity has
been eroded to the point that it cannot be detected in com-
parative genetic mapping studies [45••]. However, as the
Arabidopsis genomic sequencing project nears completion
and with the rice genome project underway, future com-
parisons will rely on sequence homologies and will be
performed on computers.
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