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In recent years, several new genomics resources and tools have

become available that will greatly assist quantitative trait locus

(QTL) mapping and cloning of the corresponding genes. Genome

sequences, tens of thousands of molecular markers,

microarrays, and knock-out collections are being applied to QTL

mapping, facilitating the use of natural accessions for gene

discovery.
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Abbreviations
EST expressed sequence tag

HIF heterogeneous inbred family

LD linkage disequilibrium

NIL near isogenic line

QTL quantitative trait locus/loci

SFP single feature polymorphism

SNP single-nucleotide polymorphism

Introduction
Quantitative trait locus (QTL) mapping has been in wide

use for nearly two decades during which molecular mar-

kers have become available in conjunction with interval

mapping methods [1]. The goal of QTL mapping is to

determine the loci that are responsible for variation in

complex, quantitative traits. In some situations, determi-

nation of the number, location and the interaction of these

loci is the ultimate goal; often, however, the identification

of the actual genes and their functions are of interest. For

example, breeding studies attempt to identify the loci

that improve crop yield or quality, and then to bring the

favorable alleles together into elite lines. Understanding

of the response of QTL in different environments or

genetic backgrounds can lead to the development of

improved crop varieties through traditional breeding. If

the genes underlying the QTL are known (i.e. the QTL

have been ‘cloned’), then transgenic approaches can also

be used to directly introduce beneficial alleles across wide

species boundaries. In evolutionary studies, QTL define

the genetic architecture of traits that are related to fitness

and that differ between recently derived species [2];

however, knowledge of the actual genes allows for studies

of molecular evolution. Studies of crop varieties and their

wild progenitors have been effective in identifying large-

effect QTL under artificial selection during crop domes-

tication [3].

Until recently, QTL mapping was limited by the avail-

ability of molecular makers and the tediousness of their

genotyping. Several high-throughput technologies that

shift the burden of QTL mapping to gathering the

phenotype information are now routine. In this review,

we describe genomics tools and resources being used for

QTL mapping (Figure 1) and cloning in Arabidopsis
thaliana, including microarrays, which are used for both

genotyping and gene expression analyses. Perhaps the

most obvious genomic resource for QTL mapping is a

complete genome sequence; but we also discuss what can

be done with synteny and mapped expressed sequence

tags (ESTs) when no complete sequence is available.

Molecular markers
Several studies have been published or are in progress

that have, for all practical purposes, eliminated the need

to identify new molecular markers in Arabidopsis. Cereon

Genomics released 56 670 single-nucleotide polymorph-

ism (SNP)/indel candidate polymorphisms from the 2–3X

shotgun sequencing of the Landsberg erecta Arabidopsis
accession [4�]. Schmid et al. [5�] identified 8688 candidate

SNP/indel polymorphisms from EST and sequence-

tagged site (STS) reads of up to 12 accessions; in this

case, the approximate allele frequencies are known for

many polymorphisms. Magnus Nordborg plans to seq-

uence up to 2000 fragments from a plate of 96 accessions

for SNP discovery and linkage disequilibrium studies. At

the time of writing, 15 388 polymorphisms are available

from 824 fragments (M Norgborg, unpublished; http://

walnut.usc.edu). The physical positions of 1267 tradi-

tional amplified length fragment polymorphisms (AFLPs)

are also available [6].

Genotyping technologies, which allow these markers to

be processed quickly, have also come on line rapidly.

Several approaches require that fragments spanning an

SNP be amplified, after which extension reactions inter-

rogate the polymorphic base [7–9]. Several approaches

differ mainly in the way that the alternative alleles are

detected. Often, the SNP amplification reactions can be

multiplexed; but usually, a maximum of 10 SNPs can be

amplified per reaction. The individual marker price con-

tinues to decline as these methods become routine.
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Array hybridization is another source of polymorphisms.

Affymetrix-type high-density oligonucleotide arrays may

contain millions of 25mer features. Each has the potential

to identify a marker when the arrays are hybridized with

labeled total genomic DNA [10��,11]. At present, data are

available for more than 19 000 non-singleton single fea-

ture polymorphism (SFPs) from 14 accessions (http://

naturalvariation.org/sfp). With SFPs, the actual base-pair

change is not known; all that is known is that a particular

25mer is likely to have a change because of the differ-

ential hybridization of the genomic DNA from two par-

ents. Thus, genomic DNA hybridized to expression

arrays can be used as both a discovery and genotyping

platform. This is an attractive method if many genotypes

are required per sample. Spotted oligoarrays may be a less

expensive alternative [12] but may suffer from lower

reproducibility and batch-to-batch variation.

Analysis methods
Bulk segregant mapping is aptly suited to parallel geno-

typing methods. Array hybridization with DNA from

pools of segregating lines, selected for alternative phe-

notypes, can quickly identify the location of large-effect

mutations [10��]. Recently, we have extended this tech-

nique to quantitative traits by pooling lines that have

extreme phenotypes (D Wolyn, JO Borevitz, J Chory,

unpublished).

Linkage disequilibrium (LD) analysis in particular will

benefit from high-resolution genotyping because several

adjacent SNPs are needed to determine haplotypes.

Hence, genomics has helped to realize LD as a tool

for fine mapping of QTL [13]. Current studies aim to

develop databases of high-resolution genotype informa-

tion from a large collection of Arabidopsis accessions

(http://walnut.usc.edu). This collection can be pheno-

typed for the trait of interest. With this information at

hand, LD-mapping studies aim to associate quantitative

phenotypes with haplotype information, a process known

as ‘in silico’ mapping [14]. The information provided by

in silico maps, in conjunction with that from traditional

QTL mapping studies, may provide a powerful way of

quickly localizing QTL candidate genes. The extent of

LD in Arabidopsis is estimated to be 50–250 kb [15],

which limits the resolution for fine mapping but, con-

versely, makes it more likely that significant associations

will be found in genome-wide scans. In maize, in which

LD is on the scale of a few kilobases, associations can

identify the underlying gene if properly controlled at

other loci [16,17,18�,19].

Given plentiful markers and high-throughput genotyp-

ing technologies, QTL studies are limited by reliable

phenotypic measures and multiple observations. Experi-

mental design is therefore paramount. Every QTL ex-

periment includes several sources of variation; for example,

variation between experiments, between lines, and within

lines. The importance of each source depends on the

goals of the experimenter, and its impact depends on the

design used. With unlimited resources, replication of the

complete experiment (including generation of the map-

ping population) at different times and in different places

surely decreases all sources of variation. Whenever

resources of fixed, however, it makes sense to choose a

design that minimizes the sources of variation that have

most impact on the experimental goals. For example, if

Figure 1
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Genomics technologies have reduced several time-consuming steps (yellow boxes) in the identification of the genes that are responsible for

quantitative traits. High-throughput genotyping techniques and large marker collections help at early stages, whereas gene expression and

knock-out collections are important at late stages.
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one would like to conclude that QTL are repeatable

across several independent experiments (perhaps across

seasons or locations), then several studies must be per-

formed. If the fine mapping of QTL is the primary goal,

then number of recombinant lines that are used should be

maximized and experimental variance minimized, often

in a single large experiment. In this case, the experiment

has been performed only once and, with the resulting

data alone, one cannot conclude that the QTL are repea-

table. QTL must be confirmed in near isogenic lines

(NILs) or heterogeneous inbred families (HIFs) [20,21].

NILs contain a small introgressed fragment in an iso-

genic background, whereas HIFs are derived from a

single recombinant inbred line that segregates a single

QTL region in an inbred background that is a mixture of

the two parents.

Once QTL are confirmed, they can be characterized

further in several environmental conditions and/or gene-

tic backgrounds. The NIL or HIF is also the starting

material for the fine-mapping and cloning of the QTL.

The availability of plentiful polymorphisms is a boon for

fine-mapping because marker discovery is often rate-

limiting at this stage. In some cases, the QTL can be

mapped directly to the gene [22,23]. Usually, the selec-

tion of candidate genes can begin once QTL have been

localized to a relatively narrow region (3 cM or less).

Candidate genes
When a full-genome sequence is available, perusing the

annotation can often suggest genes in the QTL interval

for further study. Predicted functions and gene ontolo-

gies help to guide the selection of candidate genes. The

process of selecting candidate genes relies on a wealth of

information gained through traditional genetics and

molecular approaches. Keeping gene annotation up to

date with current publications is an important task.

Recently, there have been some successful examples

of the use of the candidate gene approach to identify

QTL genes. The gene encoding the CRYPTO-

CHROME2 photoreceptor was shown to be responsible

for the phenotypic variation associated with a flowering-

time QTL [24]. In rice, three QTL have been identified

as candidate genes [25–27] whose function was known

from studies of Arabidopsis.

Once a candidate gene is selected, the first follow-up

experiment is usually to sequence the gene in the two

parental lines and to look for variation that is predicted to

have a functional consequence. As few QTL have been

cloned, it is hard to make generalizations about what kind

of changes will have phenotypic consequences, but cer-

tainly nonsense polymorphisms and deletion polymorph-

isms make the candidate gene more likely. Amino-acid

changes [24,28], as well as expression level changes, may

also be important in providing functional variation [29–31].

Several functional alleles have been identified at some

QTL loci [32–36]. In such cases, the previous identifica-

tion of high-density polymorphisms allows the interval to

be screened for changes that might have functional

consequences [37]. In this regard, genomic DNA hybri-

dization to arrays can reveal changes and potential dele-

tions in genes that make excellent candidates [10��]. A

new flowering-time QTL has been identified by this

approach in our group (J Werner et al., unpublished).

Gene expression studies in which the NIL QTL is

compared to that from the parental line (or an alternative

QTL allele from another HIF) for differences in gene

expression can also be used to identify candidate genes.

Several replicate lines are used to control for biological

variance and potential maternal effects. The conditions

and tissue selected for the gene expression study must be

chosen on the basis of the phenotype of the QTL.

Experiments that look at differences in gene expression

under several conditions will be more powerful. A set of

conditions in which the QTL has no effect provides a

control for changes that are unrelated to the phenotype;

however, changes in constitutive gene expression may

also suggest QTL candidate genes. Gene expression

studies also characterize the downstream transcriptional

response of the QTL. Thus, genes with expression-level

differences that map to the QTL are candidate genes,

whereas genes that map to other locations are part of

the molecular phenotype caused by the QTL. An alter-

native experimental design involves the use of lines from

the mapping population that have extreme phenotypes.

Replicate pools of extreme lines can be profiled inde-

pendently, so that differences in gene expression will be

specific to the phenotype and genotype that separates the

pools. This strategy was recently used to identify candi-

date genes for drought response QTL in rice (S Hazen,

personal communication). Large-scale studies are under-

way to map QTL for gene-expression differences

(eQTL) by individually profiling lines from a mapping

population. Often, the eQTL map to the gene itself,

indicating that cis changes are responsible for the differ-

ent levels of expression; however, the presence of groups

of genes that are coordinately regulated by a single

unlinked QTL suggests that trans-acting factors are con-

trolling expression [38��,39�].

QTL gene confirmation
Once candidate genes have been identified, they need to

be tested functionally. A first test of gene function is to

identify a null mutation. In Arabidopsis, thanks to several

massive functional-genomics projects, we have a near-

saturating collection of sequence-indexed T-DNA dis-

ruption mutants (http://signal.salk.edu; [40�,41��]). More

than one null allele can often be identified for most

candidate genes within the QTL interval, and the quan-

titative phenotypes of these alleles can subsequently be

measured. The ultimate step in QTL confirmation is to

reintroduce alternate alleles (using transgenic techniques)
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into reciprocal QTL lines or null mutant backgrounds to

show that each allele has a significantly different effect on

the phenotype. To date, this has been done for at least

two plant QTL [24,42]. Another elegant way to confirm a

QTL gene is to use gene replacement, which has been

demonstrated successfully in rice [43]. Gene replacement

can be used to specifically substitute alleles at the QTL

locus while maintaining the correct genomic context, as

was performed recently in Drosophila [44�].

Conclusions
Several genomics tools are available in Arabidopsis that

facilitate QTL mapping and cloning (Figure 1). What can

be done if an organism does not have a complete genomic

sequence? One approach is to use synteny with a relative

that has a sequenced genome to identify candidate genes

in the region of the QTL [45]. If ESTs are available, they

should be mapped so that they can also serve as candidate

genes should they fall within the QTL region. One

approach to map ESTs quickly is to use oligonucleotide

arrays designed from ESTs. Customized arrays can now

be designed with no up-front costs [46�]. The hybridiza-

tion of genomic DNA from parental lines will identify

polymorphisms in 25mer features on the array that corre-

spond to these ESTs. Oligonucleotide arrays can then be

used to create a high-density genetic map by genotyping a

mapping population. This high-density genetic map will

resolve the location of many of the ESTs that can serve as

candidate genes. Furthermore, these arrays have a dual

purpose as they can also be used in expression studies to

identify candidate genes. It should be possible to use

arrays designed for closely related species for both of

these purposes. Spotted arrays may also be effective for

mapping ESTs if polymorphisms can be detected. Dele-

tion lines [47] can be used to map ESTs on any array

format.

The next five years should see a burst in the number of

QTL cloned, thanks to advances in genomics. These

QTL will reveal new genes and new alleles of known

genes that have evolved in particular genetic backgrounds

under specific environmental pressures.
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