
Evolutionary complexity of MADS complexes
Anneke S Rijpkema, Tom Gerats and Michiel Vandenbussche
Developmental programs rely on the timely and spatially

correct expression of sets of interacting factors, many of which

appear to be transcription factors. Examples of these can be

found in the MADS-box gene family. This gene family has

greatly expanded, particularly in plants, by a range of

duplications that have enabled the genes to diversify in

structure and function. MADS-box genes appear to have been

instrumental in shaping one of the great evolutionary

innovations, the true flower, which originated around 120–150

million years ago and led to the enormous radiation of the

angiosperms. We propose a shift from analyzing individual

gene functions towards studying MADS-box gene function at

the subfamily level. This will enable us to distinguish

subfunctionalization events from the evolutionary changes that

defined floral morphology.
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Introduction
Evolutionary developmental biology (evo-devo) tries to

explain the diversity in animal and plant body plans.

Changes in the expression pattern or function of homeotic

selector genes — genes that determine how the different

regions of an organism develop — are especially impor-

tant in generating morphological novelty. Homeobox

genes are crucial in patterning the body axis in animals,

but it is another transcription factor family, the MADS-

box gene family, that has attained a very important

developmental role in plants. Unlike animals and fungi,

which contain only a few copies of MADS-box genes,

many plant species harbor over a hundred MADS-box

genes, belonging to a range of functionally diverged

subfamilies. Many of the MIKC-type MADS-box genes

(so-called because they contain a MADS, I, K and C

domain) play an essential role in the determination of

floral meristem and floral organ identity ([1,2]; Table 1).

The evolution of the MADS-box gene family may there-
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fore have played a central role in creating the enormous

diversity in the body plans of extant plants.

One of the key driving forces in evolution is gene dupli-

cation. Indeed, extensive duplications within the MADS-

box gene family have been essential in forming the

intricate regulatory network that is involved in present-

day floral development. The fate of duplicated gene

copies ranges from the entire loss of one of the copies,

through subfunctionalization, to (much rarer) neofunctio-

nalization. The results of almost two decades of MADS-

box research illustrate that the full plethora of these

possibilities has been employed in the evolution of the

MADS-box gene family.

In this review, we highlight several examples of non-

functionalization, redundancy and different types of func-

tional diversification of duplicated MADS-box genes. We

also discuss how differential gene duplications between

even closely related species and subsequent random

functional diversification make it hard to distinguish

simple, often species-specific, subfunctionalization

events from the creation of evolutionary novelties. Such

analyses are complicated also because many MADS-box

genes regulate their own expression by participating in

higher-order protein complexes. We argue that a shift

from analyzing individual gene functions towards study-

ing MADS-box gene function at the subfamily level

should make analyses of the function and evolution of

MADS-box genes easier.

An evolutionary driving force: gene
duplication
Whole-genome sequencing and comparative genome

analyses provide us with a lot of information on the

occurrence and origin of duplicate genes and their loss

or retention, which enhances our insight into the

dynamics of the evolution of complete gene families.

Duplicate genes can originate from large- or small-scale

duplications. In many eukaryotic organisms (including

Arabidopsis and poplar), several complete genome dupli-

cations have taken place [3,4]. A gene duplication event

in its simplest form produces two functionally redundant,

paralogous genes (a small-scale duplication could theore-

tically lead to changes in the expression pattern of the

duplicate gene). Assuming that the selective pressure is

low for either one of the duplicate genes immediately

upon duplication, the odds are that one of the duplicate

genes is neutralized because of the accumulation of

deleterious mutations. Indeed, many non-functionaliza-

tion events for MADS-box gene duplicates, either by

point mutations creating a stop codon or by elimination
www.sciencedirect.com
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Table 1

Major MIKC-type MADS-box gene subfamilies with functions characterized for (mostly Arabidopsis, Antirrhinum and Petunia) members

of these subfamilies

Subfamily Function(s) Reference(s)

AGL2/SEP Development of all floral whorls, floral meristem development [11,41,42]

AGL6 Not studied thoroughly yet, might be involved in flowering time [55]

SQUA/AP1 Sepal and petal development, floral meristem development, fruit development, flowering time [17��,45,56]

AG Stamen, carpel, ovule and fruit development, floral meristem development [8,9,18�,19��,20,40,43,44,50]

AGL11 Ovule development [8,57]

GLO/PI Petal and stamen development [14,16,31,36,37]

DEF/AP3 Petal and stamen development [14,16,31,36]

Bsister Seed coat development [58]

AGL17 Root development [59,60]

TM3/SOC1 Flowering time, flowering activator (floral pathway integrator) [61–63]

AGL15 Might be involved in promotion of embryo development [64]

FLC Flowering time, flowering repressor [65]

StMADS11 Flowering time, flowering repressor and flowering activator [66,67]
of gene parts or complete genes, have been identified

in genome-wide analyses of Arabidopsis, rice and poplar

[5–7].

Redundancy, subfunctionalization and
neofunctionalization
Redundancy, the existence of paralogous genes that per-

form the same function, is common in the MADS-box

gene family [8–11]. Redundant gene copies can appar-

ently be maintained for some time by purifying selection,

because their functional redundancy guards against dele-

terious mutations and contributes to the genetic robust-

ness of an organism [12]. Moreover, redundancy is

thought to create an advantage, especially for genes that

encode a product that is ‘beneficial’ in larger quantities

[13].

Although we do encounter a high degree of partial or full

redundancy within the MADS-box gene family, espe-

cially in recently duplicated clades, there are also many

examples of the diversification of the functions of dupli-

cate genes (e.g. [14–16,17��]).

The most common mechanism for diversification in func-

tion after a gene duplication event is subfunctionaliza-

tion, as seen for the rice AGAMOUS (AG)-clade genes

OsMADS3 and OsMADS58 [18�]. Together, these two

genes fulfill the complete ancestral role as defined for

the Arabidopsis AG gene: regulating the organ identity of

stamens and carpels and regulating floral meristem deter-

minacy. However, OsMADS3 and OsMADS58 have

divided these tasks: OsMADS58 is mainly involved in

floral meristem determinacy and has a predominant role

in carpel morphogenesis, whereas OsMADS3 is more

important in inhibiting lodicule development and in

specifying stamen identity [18�].

Subfunctionalization is a random process and happens

independently in different species. Owing to the occur-
www.sciencedirect.com
rence of species-specific subfunctionalization processes,

orthologs do not necessarily have the same function, and

conversely homologs that have the same function are not

necessarily orthologs. This is nicely illustrated by the

functionally equivalent homologs PLENA (PLE) from

Antirrhinum and AG from Arabidopsis, which turned out

to be paralogs [19��,20]. After the gene duplication in a

common ancestor, different members of the duplicated

gene pair have retained the primary homeotic functions in

different lineages (PLE in Antirrhinum and AG in Arabi-
dopsis), while their respective orthologs (SHATTER-
PROOF [SHP] in Arabidopsis and FARINELLI [FAR]

in Antirrhinum) have undergone independent (and quite

divergent) subfunctionalization processes [19��,20].

Even though subfunctionalization is more likely to hap-

pen than neofunctionalization, completely new gene

functions do arise occasionally. A clear example of the

neofunctionalization of a MADS-box gene resulting in a

morphological novelty is found in the Solaneaceous spe-

cies Physalis. An eye-catching characteristic of Physalis is

its ‘Chinese lantern’, which is formed when the sepals

resume growing after pollination to encapsulate the

mature fruit. In an elegant study, He and Saedler

[21��] demonstrated that it is the heterotopic expression

of the MPF2 MADS-box gene in the flower that provided

the gene with a function in the development of this new

morphological trait.

MADS-domain protein complexes and
(auto)regulatory loops
MADS-domain proteins form multimeric protein com-

plexes that interact with promoter sequences of their

target genes [22,23]. Different complexes act on different

sets of target genes, and thus bring about different devel-

opmental processes (e.g. [24��,25]). The majority of inter-

actions of MADS-domain proteins reported to date are

between different MADS-domain proteins, but non-

MADS-domain protein components of these complexes
Current Opinion in Plant Biology 2007, 10:32–38
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are also being identified [26,27]. Recently, a direct phys-

ical interaction between SEUSS (SEU), a transcriptional

repressor of AG, and the carboxy-terminal (C-terminal)

domain of SEPALLATA3 (SEP3) and APETALA1

(AP1) was demonstrated in Arabidopsis [28��]. This sug-

gests that AP1 and SEP3 might function as both activators

and repressors, depending on their interactions with co-

activators (such as AG for SEP3 [24��]) or co-repressors

(such as SEU and LEUNIG [28��]).

Both the K-domain (keratin-like domain, located down-

stream of the DNA-binding MADS domain) and the C-

terminal domain are involved in the formation of (higher

order) protein complexes [22,29–31]. Therefore, muta-

tions in these regions can affect either partner affinity or

the specificity of protein–protein interactions. A recent

study on AP1 and CAULIFLOWER (CAL), two Arabidopsis
genes that have very similar sequences and expression

patterns but partially diverged functions, showed that

differences in the K and C-terminal domains of these

genes were crucial for the unique and indispensable roles

of AP1 during floral organ and meristem fate determina-

tion [17��]. AP1 (and not CAL) interacts with several

specific proteins that are known to be involved in floral

organ fate determination [32], and so it seems that the

interaction of these proteins with the AP1 K and C-

terminal domain regions determines its specific function

[17��].

MADS-domain proteins can form complexes that often

interact with their own and orthologous/paralogous pro-

moters to regulate their own and each other’s expression

[24��,28��,33�,34–39]. Generally, the molecular origin of

diversification in function (be it in unique or in redundant

genes) is considered to be due to either changes in the

coding sequence or changes in the regulatory circuit of

the gene, which result in a shift (either restriction/expan-

sion or reduction/enhancement) of its expression pattern.

In the case of AP1 and CAL, the diversification in function

is clearly due to changes in the coding sequence, but the

source of functional diversification will probably be more

problematic to determine for many of the other MADS-

box genes. As changes in the protein sequence can affect

partner-specificity and as MADS-domain protein com-

plexes are often part of autoregulatory loops, it is not

unlikely that changes in protein sequence could also lead

to changes in expression pattern. Such an effect would be

completely masked if constructs were tested only under

the control of constitutive promoters.

Shifting from the gene to the subfamily and
family level
The random nature of subfunctionalization following

duplication is becoming more and more apparent. This

is reflected in the differences in number of particular

subfamily members, even between closely related spe-

cies, and in the differences in the degree of redundancy
Current Opinion in Plant Biology 2007, 10:32–38
and subfunctionalization between these genes. Clear

examples have been found already for class B-, C- and

E-function MADS-box genes ([9,16,36,37,40–44];

Figure 1). When the full functional palette of a set of

subfunctionalized genes is considered together, however,

it turns out that the complete set of functions is fairly well

conserved between species. In such cases, differences in

gene function between individual orthologs from these

species do not necessarily imply a fundamental difference

in function. Therefore, when comparing individual gene

functions between species in isolation from their specific

gene subfamily context, it is difficult to distinguish true

differences in gene function from differences caused by

redundancy and divergent subfunctionalization. To facil-

itate the identification of differences in gene function

between species, we therefore will have to analyze fully

all members of entire subfamilies. For this reason, it is of

crucial importance to consider the full array of MADS-box

genes of the relevant subfamily in the species being

studied. Large-scale expressed sequence tag (EST)

sequencing, combined with genomic screens for

MADS-box genes, expression analyses, and whole-gen-

ome sequencing efforts [5,45–50,51�], will certainly help

to assign gene functions to all members of a specific gene

family.

A clear example in which only analysis of all subfamily

members provided the full answer is the analysis of the B-

function in Petunia. In both Arabidopsis and Antirrhinum,

knockouts of the euAP3 lineage gene result in the homeo-

tic conversion of petals to sepals in the second whorl and

of stamens to carpels in the third whorl. Knocking out the

euAP3 gene in Petunia leads only to the homeotic con-

version of petals to sepals, while stamen development is

unaffected. This prompted the suggestion that the Pet-
unia euAP3 function is different from that of its orthologs

in other species [52]. The analysis of the entire B-function

subfamily in Petunia revealed, however, that Petunia
hybrida TOMATO MADS-BOX GENE6 (PhTM6), a

paleoAP3 lineage gene copy that has been lost in Arabi-
dopsis, was responsible for the one-whorl-only phenotype

of P. hybrida deficiens ( phdef) mutants: it acts redundantly

with PhDEF in anther formation [16]. PhDEF thus dis-

plays all of the characteristics that are typically associated

with normal euAP3 gene function as described for DEF
and AP3.

MADS-box proteins seem to function mostly as subunits

of larger protein complexes. Changes in MADS-box

protein function can thus cause changes in the function

of the particular complex that they are part of, and thus

might be accompanied by co-evolutionary changes in

other components of the complex. An in-depth analysis

of the complete MADS-box gene family in a limited

number of model species, including family-wide pro-

tein–protein interaction screens [32], will provide a dee-

per insight into these processes. The functioning of
www.sciencedirect.com
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Figure 1

Schematic depiction of the functions defined for representatives of the best-characterized MADS-box gene subfamilies in Arabidopsis thaliana,

Antirrhinum majus, and Petunia hybrida [9,16,36,37,40–44]. Relationships between genes are indicated by branch points but lines are not

to scale. Functional redundancy between two or more genes is indicated by a grey block. The stars indicate which of the partly redundant

genes is most crucial for a particular function. For instance, FAR is more crucial to stamen development than PLE, and SEP3 is more crucial for

meristem determinacy and floral organ development than the other Arabidopsis SEP genes. The question marks indicate genes that have not

yet been completely analyzed.
MADS-box proteins as components of protein complexes

also clearly asks for functional analyses to be performed in

the natural context of the gene examined, arguing for a

functional analysis in the species under research rather

then using heterologous systems. Unfortunately, many

potential model species that are of interest from the

morphological point of view are not amenable to the

desired functional analyses. Applying techniques such

as virus-induced gene silencing (VIGS) [53] or TILLING

(Targeting Induced Local Lesions In Genomes [54])

might, however, provide research opportunities for such

species in at least some cases.

Conclusions
Studies of MADS-box genes are beginning to cover an

increasingly wide array of species across all major plant

taxa, and thus we are gaining a truly evolutionary view of

how these genes can change function upon duplication

and of how the flower in its present form has emerged.
www.sciencedirect.com
The MADS-box genes offer exciting opportunities, not

only in molecular research but also for understanding

fundamental aspects of (co)-evolution and the back-

ground of morphological innovations in plants.
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