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Defenses against most specialized plant pathogens are often

initiated by a plant disease resistance gene. Plant genomes

encode several classes of genes that can function as

resistance genes. Many of the mechanisms that drive the

molecular evolution of these genes are now becoming clear.

The processes that contribute to the diversity of R genes

include tandem and segmental gene duplications,

recombination, unequal crossing-over, point mutations, and

diversifying selection. Diversity within populations is

maintained by balancing selection. Analyses of whole-genome

sequences have and will continue to provide new insight

into the dynamics of resistance gene evolution.
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Introduction
Plant disease resistance genes (R genes) encode proteins

(R proteins) that represent the first line of defense against

infection by many biotrophic pathogens. These patho-

gens are usually highly specialized for specific host plants,

and the interaction at the molecular level is often complex

because of the co-evolution of the host and pathogen. Our

understanding of the molecular mechanisms that underlie

these interactions has dramatically improved in recent

years. As a result, the genes that are crucial to the plant–

pathogen interaction have formed the basis of numerous

and ongoing evolutionary analyses. Natural selection has

had a powerful influence on both the pathogen-produced

avirulence or ‘effector’ molecules, which are crucial to the

infection process, and host R genes, which are critically

important to plant defense. Recent studies demonstrate

how selection has shaped single R genes or gene families

as well as gene frequencies in populations. Advances in

the evolutionary analysis of R genes have benefited from

sequence analysis, comparative genomics, phylogenetic

analysis, large-scale genome sequencing, and population
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studies. In particular, the past few years have seen

remarkable progress in understanding the mechanisms

of R gene evolution in Arabidopsis, but notable findings

have also emerged from studies in other plant species. In

this review, we focus on recent studies describing the

evolution of plant R genes.

R gene classes
Many R genes have now been cloned from a wide variety

of plant species. One of the best recent reviews of R gene

structure and function is that by Dangl and Jones [1]. It is

now clear that most R genes encode proteins that have a

putative amino-terminal signaling domain, a nucleotide-

binding site (NBS) and a series of carboxy-terminal

leucine-rich repeats (LRRs). These ‘NBS-LRR’ proteins

have been divided into two major classes: those with an

amino-terminal TIR (Toll/interleukin receptor) domain

(which are known as TIR-NBS-LRR or TNL proteins)

and those that encode an amino-terminal coiled-coiled

motif (CC-NBS-LRR or CNL proteins). The details of

the molecular functions of these protein domains and

their interacting partners are still being established. How-

ever, the consistent identification of this class of proteins

across diverse plant species demonstrates that the NBS-

LRR genes are a pillar of plant defenses.

Several classes of plant R genes have been identified in

addition to the seemingly pervasive NBS-LRR class of R
genes. The powdery mildew resistance gene RPW8 is an

interesting case; this Arabidopsis protein is small, has only

an amino-terminal transmembrane domain and a CC

domain, and confers an unusually broad spectrum of

resistance [2]. The rice Xa21 gene encodes another type

of R protein, a receptor-like kinase (RLK) that contains

both LRR and kinase domains [3]. A second rice RLK

that is involved in disease resistance, Xa26, has now been

cloned, suggesting that other RLKs may recognize patho-

gens, at least in rice [4]. Yet another class of R genes, those

that encode extracellular LRRs with a transmembrane

domain (i.e. receptor-like proteins [RLPs]), is typified by

the tomato genes conferring resistance to Cladosporium
fulvum (Cf) [5,6]. In 2004, it was demonstrated that RLPs

are also used in other plant species for pathogen recogni-

tion; the Arabidopsis RPP27 and the apple HcrVf2 R genes

were both shown to encode RLPs [7,8]. Previously, most

classes of R proteins other than NBS-LRRs were repre-

sented by only one gene or locus, raising the question of

whether pathogen recognition by these proteins types

was exceptional. Genes that encode RLKs and RLPs are

abundantly represented in plant genomes and have

well-characterized roles in plant development. So, the

identification of defense functions for these proteins in
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multiple plant species suggests a wider role for these

proteins in plant defenses. The diversity of species from

which RLK and RLP R genes have been identified

suggests that the resistance function either evolved by

convergence or originated in a common ancestor of these

species. Evolutionary analyses of other classes of R genes,

such as that including the tomato kinase Pto, have also

been described [9,10], but the majority of R genes encode

NBS-LRRs, and evolutionary studies have primarily

focused on this class.

Genome-wide evolutionary analyses of
R genes
Genomic sequence analyses

Several recent publications have utilized the complete

sequence of Arabidopsis to infer the evolutionary forces

acting on the NBS-LRR protein family. Studies have

focused on this family of proteins because its only known

function is in disease resistance. The Arabidopsis genomic

sequence contains 149 NBS-LRR genes and 58 shorter

related genes [11��]. Classification based on protein

domains, intron positions, sequence conservation, and

genome distribution has been used to define specific

subgroups of CNL and TNL proteins. Although the

TNL family is nearly twice the size of the CNL family

in Arabidopsis, the data suggest that TNLs are more

homogeneous and have amplified more recently in this

genome than have CNLs [11��]. Sequence comparisons

among subgroups of Arabidopsis NBS-LRRs provided

evidence that selection has acted to diversify LRR

sequences, as has been shown for numerous clusters or

families of R genes [12]. Similar genetic studies have

identified and characterized 59 RLPs and more than 600

RLKs from Arabidopsis [7,13]. However, as described

above, few of these genes are known to function as R
genes.

Rice presents the next genome for which an extensive

analysis of NBS-LRRs will be possible. Several groups

have published early results obtained using the incom-

plete rice sequence [14,15]. More than 500 NBS-coding

sequences have been characterized in rice, nearly all of

which encode CNLs and none of which encode TNLs

[14–16]. This NBS-LRR gene family in rice is quite

diverse. However, analysis of Arabidopsis NBS-LRRs

demonstrated that an accurate final analysis requires

manual re-annotation and the verification of gene predic-

tions, and this can only be performed on finished

sequence [11��]. For evolutionary analyses in any species,

the availability of a second, related genomic sequence

would help immeasurably. For rice, comparisons of the

rice indica and japonica sequences might be informative

[17,18], although the sequences of more distantly related

species would be more useful.

Genomic analyses have identified the TIR-containing

sequences as a particularly interesting group of proteins.
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Two new families of TIR-containing proteins, which are

encoded by more than 50 genes, were also identified in

the Arabidopsis genome [16]. The TIR-X (TX) family

lacks both the NBS and LRRs that are characteristic of

the R proteins whereas, when compared to TNL proteins,

the TIR-NBS (TN) proteins lack only the LRR domains

[16]. TX and TN proteins are encoded in the genomes of

conifers and grasses, and two TN proteins are extremely

well-conserved in Arabidopsis and rice, suggesting that

these are ancient protein families [16]. No TNL-

encoding genes have been identified in cereal genomes,

although they are found in gymnosperms, suggesting that

the grasses might have lost this type of gene [14,16].

Intriguingly, the Arabidopsis R gene RPP2A has recently

been demonstrated to encode a protein that is similar to a

fusion of TN and TNL proteins [19]. Many questions

remain about the evolution of TIR proteins in plants, not

the least of which is whether the presence of TIR-based

defenses in both plants and animals is due to convergence

or conservation (see below).

Clustering of R genes and the impact of genomic

duplication events

Genetically defined clusters of R genes are well known,

and molecular studies have demonstrated that this clus-

tering usually results from tandem duplications of para-

logous sequences [11��,20–22]. This clustering is a well-

known phenomenon observed at many R gene loci [23].

The many NBS-LRRs encoded in the Arabidopsis and

rice genomes are found in numerous clusters, and expan-

sion within these clusters is predicted to be a conse-

quence of tandem duplications resulting from unequal

crossing over [11��,15,21,24�]. Clusters of closely related

and co-localized R genes frequently exchange seq-

uences, but there is no evidence of sequence exchange

among related genes that are located in separate clusters

[11��,24�]. Analyses of the Arabidopsis genome indicate

that numerous small-scale genomic duplications have

copied or translocated one or several NBS-LRR genes

from these clusters to distal and probably random loca-

tions in the genome (‘ectopic duplications’) [11��,
24�,25�]. Heterogeneous genomic clusters comprised

of non-paralogous NBS-LRR sequences have probably

formed by chance due to random rearrangements

[11��].

Segmental genomic duplications have probably caused a

substantial increase in the number of Arabidopsis NBS-

LRR sequences [11��,24�,26]. A recent review by Leister

[25�] nicely compares reports that have described the

involvement of tandem and segmental duplications in

Arabidopsis NBS-LRR evolution. Soon after most geno-

mic segmental duplication events, many duplicate NBS-

LRRs might have been lost, possibly because of selection

[26]. At some loci, tandem duplications have expanded

gene families and the duplicated sequences have

diverged through accumulated mutations, increasing
www.sciencedirect.com
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the complexity of R gene sequences [24�,25�]. Although

NBS-LRRs show rates of duplication and mutation that

are similar to those of other gene families [11��], natural

selection might differentially shape the composition of

this gene family.

Population-level insights into R gene evolution

R gene evolution must be considered in the context of

naturally variable populations. Population studies have

demonstrated that balancing or frequency-dependent

selection maintains R gene loci in a polymorphic state

within a population. Selection is balanced by the positive

impact of the enhanced fitness of the host in the presence

of the pathogen and by a negative impact of the R gene on

host fitness in the absence of the pathogen. Balancing

selection contrasts with the so-called ‘arms race’ model in

which host and pathogen are continually ratcheting up the

effectiveness of defensive and offensive proteins [27,28].

The ‘arms race’ hypothesis might adequately describe the

evolution of a resistance gene recognizing a single patho-

gen ‘avirulence’ gene that is uniquely essential for infec-

tion of a homogeneous plant population. However, this

does not adequately reflect the true complexity of popu-

lations, and pathogens express and secrete a diverse set of

proteins, the combination of which is probably important

for infection [29]. The diversity and dynamics of the

natural host and pathogen populations, and the interac-

tions of these populations, make it unlikely that any

single R gene or allele will be driven to fixation. For

example, populations of Arabidopsis segregate for a func-

tional and a null allele at the RPM1 and RPS5 loci,

whereas the RPS2 locus segregates for resistant and

susceptible alleles [30–32]. Analyses of sequence diver-

sity in these populations indicate that resistant and sus-

ceptible haplotypes have probably been maintained over

an extensive period of time, consistent with balancing

selection. It is possible that populations remain poly-

morphic for the presence of certain R genes, despite

the benefit of these genes in defense against pathogens,

because of a fitness cost that is associated with the

presence of functional alleles [33��]. However, most

published studies have focused on Arabidopsis genes that

confer resistance to Pseudomonas syringae, using strains of

this pathogen isolated from crop species. An analysis of

Cf-2 homologs isolated from populations of a wild relative

of tomato identified wide variation in these R gene

sequences, and the authors suggest that this polymorph-

ism is favored by balancing selection [34]. Another recent

study assessed the diversity of RPP13 in natural popula-

tions of Arabidopsis and the pathogen Peronospora para-
sitica [35�]. An analysis of 24 accessions of Arabidopsis
showed that extremely high levels of polymorphism are

maintained at the RPP13 locus. This variation was attrib-

uted in part to extensive recombination [35�]. The rates of

synonymous and non-synonymous substitutions were

consistent with balancing selection that favors amino-acid

variation in the LRR region of this gene [35�]. An inter-
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esting follow-up to this study resulted from the recent

cloning of the P. parasitica avirulence gene ATR13. The

ATR13 gene is highly polymorphic in the pathogen

population, consistent with balancing selection maintain-

ing variation in both host and pathogen populations

[36��]. Additional studies are needed, but it is clear that

balancing selection maintains polymorphism at many R
gene loci.

One of the most intriguing and extensive analyses of R
genes across diverse accessions demonstrates the pre-

sence of two distinct types of genes at the RGC2 locus

of lettuce [37��]. Specific resistance in lettuce to the

downy mildew pathogen is conferred by the RGC2 family

member Dm3, which is one of at least 32 NBS-LRR-

encoding genes clustered at this locus. Kuang et al. [37��]
amplified and sequenced 126 distinct RGC2 fragments

from seven lettuce genotypes. These sequences appar-

ently represent two distinct types of genes, differentiated

by numerous measures of evolutionary rates [37��]. Type

I genes were characterized by a higher frequency of

sequence exchanges, resulting in more chimeric genes.

Hence, individual Type I genes were observed across

different accessions less frequently than were Type II

genes. Orthologs of Type II genes were found in different

lettuce accessions, possibly maintained under the influ-

ence of purifying selection. Overall, the RGC2 data sug-

gest that the Type II genes evolve more slowly than Type

I genes, reflecting different rates of evolution and selec-

tive pressures [37��]. As the lettuce RGC2 cluster is

exceptional in its size and complexity and no comparable

loci exist in Arabidopsis, it will be interesting to see if the

RGC2 duality is corroborated in other clusters and plant

species. One possible mechanism for the creation of two

types of genes could be that genes that are located

centrally in a cluster might evolve differently than genes

in more terminal locations. This characteristic was

described for the tomato Cf-9 cluster and was also noted

for the lettuce RGC2 cluster [37��,38].

Cross-species comparisons

Relatively few studies have analyzed patterns of R gene

evolution across species, in part because of the difficulty

in identifying and determining the function of truly

orthologous sequences. One such analysis focused on

the R gene RPW8, which confers broad-spectrum resis-

tance to powdery mildew, has recently been published

[39�]. Analysis of the syntenic RPW8 family in four

Brassica and Arabidopsis species demonstrated duplica-

tion, deletion, and divergence within the gene family,

themes that are common to the evolution of all R gene

families. The RPW8 gene is particularly unusual because,

unlike other cloned R genes, it functions as a transgene in

an unrelated genus, suggesting the conservation of the

interacting components and signaling systems across

plant families [40]. Most R genes might not function

in divergent species because of a requirement for
Current Opinion in Plant Biology 2005, 8:129–134
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species-specific interacting proteins that have co-evolved

with the R gene.

A second intriguing study resulted from the cloning of

genes from divergent plant species that recognize the

same bacterial avirulence protein. Ashfield et al. [41,42��]
cloned Rpg1-b from soybean and compared this gene to

the functionally analogous CNL gene RPM1 of Arabidop-
sis. Both genes confer resistance to Pseudomonas syringae
expressing avrB. The level of amino-acid sequence iden-

tity between the encoded RPM1 and Rpg1-b proteins is

low and they are not orthologous; because both plant

genes recognize the avrB specificity, these genes must

have independently evolved nearly identical functions

[42��]. The evolutionary implications of this first identi-

fied case of the convergent evolution of an R gene have

been reviewed by McDowell [43].

Ancestral inferences

Genes that encode NBS-LRRs have been identified in

gymnosperms and non-vascular plants [44,45]. Related

proteins are also involved in innate immunity in mam-

mals. For example, the similarity between the NBS of

plant R proteins and that of the mammalian apoptotic

response protein Apaf-1 was identified several years ago

[46]. It is also interesting that NBS and LRR domains are

both present in the mammalian Nod family of immunity-

related proteins [47] and in a family of more than 14 pyrin-

containing Apaf-1-like proteins [48]. In addition, the TIR

domain has been shown to mediate protein–protein inter-

actions in the animal innate immune system [49,50],

although TIR-encoding genes, such as the TX, TN and

TNL genes, are more common in plant genomes than

in animal genomes. The involvement of both TIR-

containing and NBS-LRR proteins in animal and plant

defense systems suggests a common and ancient origin,

but additional analyses of the extant progenitors of higher

plants are needed to determine the origin of plant

defenses and of R genes.

Conclusions
Within the past few years, studies have shown the impor-

tant contributions that tandem and segmental gene dupli-

cations, recombination, mutation and natural selection

have made to the evolution and diversity of plant R genes.

In the next few years, evolutionary studies of R genes are

likely to take advantage of additional plant genome

sequences, population biology, and functional studies

of paralogs and orthologs. Numerous important questions

remain to be addressed about the ancestral origin and

evolution of plant R genes. How extensive among plant

families is the notable absence of TNLs that has been

observed in grasses? Why do dicots utilize two types of

NBS-LRR R proteins, TNLs and CNLs, and are they

entirely functionally equivalent? How extensive is the

redundancy of the signaling systems for each of the

classes of R proteins and where do the pathways
Current Opinion in Plant Biology 2005, 8:129–134
converge? Is the apparent relationship between plant

and animal immune responses a result of convergent

evolution or did these defense systems share a common

origin? Combined with focused experimentation, the

expanding availability of plant genomic resources in

model and crop species and in non-vascular plants will

create novel opportunities to develop and test hypotheses

about R gene evolution.
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