
Advances in plant chromosome identification and
cytogenetic techniques
Akio Kato, Juan M Vega, Fangpu Han, Jonathan C Lamb and
James A Birchler
Recent developments that improve our ability to distinguish

slightly diverged genomes from each other, as well as to

distinguish each of the nonhomologous chromosomes within a

genome, add a new dimension to the study of plant genomics.

Differences in repetitive sequences among different species

have been used to develop multicolor fluorescent in situ

hybridization techniques that can define the components of

allopolyploids in detail and reveal introgression between

species. Bacterial artificial chromosome probes and repetitive

sequence arrays have been used to distinguish each of the

nonhomologous somatic chromosomes within a species. Such

karyotype analysis opens new avenues for the study of

chromosomal variation and behavior, as well as for the

localization of individual genes and transgenes to genomic

position.
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Introduction
Chromosomal identification procedures allow investiga-

tors to use fluorescent signals that identify specific

sequences, chromosomes, chromosomal segments or

whole sets of chromosomes to gain a genome-wide view

at a single glance. Such a perspective is valuable for many

applications including a determination of the genome-

wide distribution of repetitive sequences, visualization of

genomic rearrangements in individual cells and analysis

of chromosomal behavior. Cytogenetic techniques have

become necessary components of studies of the organiza-

tion of the genome and its association with chromatin. In

this review, we summarize recent developments in tech-

niques for distinguishing chromosomes from different

genomes and for differentiating the nonhomologous com-
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ponents within a genome. We also discuss other related

cytological tools.

Genomic in situ hybridization
The first procedure to use fluorescent labels to distinguish

chromosomes in the plant kingdom involved the process

of genomic in situ hybridization (GISH) [1]. This widely

applied cytogenetic technique provides a direct visual

method for distinguishing parental genomes and analyz-

ing genome organization in interspecific hybrids, allopo-

lyploid species and interspecific introgression lines [2]. In

GISH, labeled total genomic DNA is used as a probe with

unlabeled genomic DNA from another species as a block-

ing agent. Because the chromosomal sequences that are

common to the two species contributing to the analyzed

specimen are hybridized with unlabeled DNA, the

labeled probe, especially the portion containing species-

specific dispersed repetitive sequences (such as transpo-

sable elements), hybridizes to only one of the two sets of

chromosomes.

Because of the allopolyploid nature of wheat and other

members of the Triticeae tribe, their genomes have been

extensively studied by GISH. This technique has a

practical application in identifying alien chromatin intro-

gression from different species as well as for studying

chromosomal pairing and recombination between diver-

gent genomes. Discriminating between two genomes of

distant genera is easier than discriminating genomes

within the same genus. Thus, the identification of the

three closely related genomes in allohexaploid wheat

(Triticum aestivum L.) is difficult. Recently, Han and

colleagues [3��,4�] developed a modification of the multi-

color GISH method to overcome this problem. Before this

work, the identification of the A, B and D genomes of

common wheat using GISH had been reported by Mukai

et al. [5] and Sanchez-Moran et al. [6]. However, the

methods used in these studies did not work consistently,

and that used by Sanchez-Moran et al. [6] did not easily

distinguish the A and D genomes. A new approach by

Han et al. [3��] overcomes these problems because the

results using this methodology can clearly discriminate

the three genomes of wheat and of introgressed alien

chromatin (Figure 1). Total genomic DNA of Thinopyrum
intermedium and Triticum urartu was labeled with

digoxigenin-11-dUTP, and total genomic DNA of

Aegilops tauschii was labeled with biotin-16-dUTP by

the nick-translation method. Total genomic DNA of
www.sciencedirect.com
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Figure 1

Multicolor GISH pattern of a wheat–Thinopyrum intermedium addition line. The A-genome chromosomes were detected as yellow fluorescence,

the D-genome chromosomes were revealed by red fluorescence, and the B-genome chromosomes appeared as a brown color as a result

of cross hybridization of different genomic probes. The alien chromosomes or fragments of Th. intermedium were revealed by green

fluorescence. Arrowheads indicate one pair of wheat–Th. intermedium translocation chromosomes involving the wheat B genome and

Th. intermedium chromosome segments (brown and green). Arrows indicate that a pair of Th. intermedium chromosomes has been

added (green). (Photo by F Han.)
Aegilops speltoides was used for blocking. Detection of the

biotinylated probe was accomplished with avidin-XRITC

and digoxigenin using a fluorescent antibody enhancer

set. The chromosomes were counterstained with DAPI.

This multicolor GISH provides a powerful technique that

could be generalized to determine the genomic constitu-

tion and variation in allopolyploids of other plant groups.

Karyotyping using FISH
Rather than distinguishing chromosomes from different

genomes in hybrids or allopolyploids, karyotyping tech-

niques are used to differentiate the nonhomologous

chromosomes within a genome. Such procedures are

important for detecting chromosomal aberrations, for

defining which chromosomes are involved in cases of

aneuploidy, for studies of chromosomal behavior and

for the genomic localization of repetitive DNA sequence

arrays, individual loci or transgene insertion sites.

The most commonly used probes for fluorescence in situ
hybridization (FISH) karyotyping in plant species are the

5S and 25S rRNA genes, tandemly repeated sequ-

ences near telomeres, and centromere-specific repeats.

A limited number of tandemly repeated sequences, which

provide a large target for hybridization by a single probe,

makes chromosome identification possible by FISH pro-

cedures in Arabidopsis thaliana [7], Pinus species [8] and
www.sciencedirect.com
Norway spruce [9]; however, in the latter two cases there

are some ambiguities in the ability to distinguish different

members of the karyotype. By combining these FISH

landmarks with other chromosomal characters such as arm

ratio and heterochromatic regions, precise karyotyping

has been reported for the cytologically well characterized

KYS inbred line of maize [10,11] and for selected lily

species [12].

Considerable progress was made recently in the process of

identifying unique DNA sequences that can be used for

chromosomal identification in multicolor FISH proce-

dures on plant chromosomes. Lysak and colleagues

[13,14��] demonstrated the use of bacterial artificial chro-

mosome (BAC) clones for chromosome painting of

Arabidopsis species, namely, the separate labeling of

chromosomes to visualize each in different colors.

Because of its small genome size and paucity of repeated

sequences, the chromosome arms of Arabidopsis were

successfully painted with contiguous BACs of a total

length of 2.6–14.4 Mb. The ability to paint chromosomes

makes it possible to visualize individual chromosomal

behavior throughout the cell cycle. In several plant spe-

cies, individual BACs have also been used successfully

as FISH probes to detect the chromosomal location of

specific sequences [15–17]. In tomato [18], sorghum [19]

and potato [20], BACs that are specific to a chromosome
Current Opinion in Plant Biology 2005, 8:148–154
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arm were stably mapped using low Cot DNA suppression

hybridization. This process blocks the nonspecific hybri-

dization of the repetitive sequences by consuming

repeated DNA sequences in the probe DNA by prean-

nealing it with a low Cot fraction of highly repeated

sequences or by saturating the repeated sequences on

the chromosomes. Thus, only the sequences in the BAC

that are not abundant in the target genome can hybridize

to the target.

Screening BACs using FISH on wheat [21] and Silene
latifolia [22] has been carried out for a different purpose.

In this case, they were used to identify tandemly arrayed

repeats that could be used for chromosome identification.

Several BACs containing useful repetitive sequences that

showed unique banding patterns on the chromosomes

were isolated and could be used for karyotyping purposes.

Koumbaris and Bass [23�] used labeled Sorghum BACs

containing markers common to chromosome 9 of maize

and succeeded in labeling maize chromosomal segments

that are homologous to selected Sorghum BACs in an

effort to develop a combined physical-genetic map of

maize. Their success is based on the higher gene density

of the Sorghum BACs than maize BACs, and the diver-

gence of the repetitive elements between the two

species. Detection of maize BACs or cosmids on maize

chromosomes by suppression hybridization is possible but
Figure 2
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the background levels are high [24,25] because of the

presence of a high level of dispersed repetitive sequences

in the genome.

Another approach to identifying new FISH probes for

chromosome karyotyping is FISH screening of subtracted

random PCR libraries, as demonstrated by Kato and

colleagues [26��]. During the screening, a (TAG)n micro-

satellite and chromosome-specific subtelomeric seque-

nces were recovered. These two repeat arrays show

distinct patterns on several maize chromosomes. By simu-

ltaneously using nine probes, including the two newly

identified (TAG)n microsatellite and chromosome-

specific subtelomeric sequences, a multicolor FISH

procedure identified each of the ten maize somatic chro-

mosomes in all inbred lines and varieties tested to date

([26��]; Figure 2). This approach of increasing the number

of repetitive array probes could be applied to other

species to improve the technique’s ability to distinguish

the different nonhomologous chromosomes in a karyo-

type.

Conventionally labeled biotin or digoxigenin probes, that

are detected by subsequent fluorochrome conjugated

antibody or streptavidin application, have been used

for multicolor FISH procedures [27]. However, for kar-

yotyping purposes, in our experience, probes that directly

incorporate fluorochrome-labeled nucleotides give more
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consistent signal presence on chromatin and improved

signal to background ratios than do the antibody systems.

A variety of DNA-labeling systems are available commer-

cially; however, nick translation works well for karyotyp-

ing [26��].

Because the identification of chromosomes using FISH

probes is not dependent on the extent of chromosome

condensation or measuring arm ratios, individual chromo-

somes can be identified and studied at various stages in

the cell cycle. For example, whole or partial chromosome

paints in Arabidopsis can distinguish chromosomes at

pachytene of meiosis and have been used to locate

chromosomes in mitotic interphase when no chromatin

condensation has occurred [14��,28]. Kato and colleagues

[26��] successfully distinguished each chromosome in the

maize complement at meiotic anaphase using the com-

plete FISH probe cocktail described above.

Bass and colleagues [29] investigated maize chromosome

meiotic behavior in an oat genetic background using a

technique similar to GISH to examine homologous pair-

ing, which revealed that synapsis is initiated at the late

leptotene stage. The ability to locate chromosomal

regions without dependence on chromosome shape has

allowed studies on nuclear architecture in Arabidopsis
during interphase [28] and meiotic processes [30].

Transgene detection
Chromosomal position and local chromatin structure are

thought to have a profound effect on the level of gene

expression. Variable transgene expression and silencing

occur frequently in transgenic plants. In the past few

years, there has been much interest in the correlation

between transgene expression and cytogenetic position

[31��]. In plants that have been genetically engineered by

particle bombardment or Agrobacterium-mediated trans-

formation, the integration mechanism does not appear to

be sequence-dependent and presumably occurs via ille-

gitimate recombination at double-strand breaks in the

genomic DNA [32]. Thus, in Arabidopsis, studies of

insertion sites of Agrobacterium tumor-inducing DNA

(T-DNA) used for transformation [33], identified by

the isolation of flanking sequences, suggest an unbiased

distribution among the five chromosomes. However,

reports of transgene detection by FISH in barley [34]

and other cereal species indicate a tendency toward the

localization of transgenes in distal (i.e. subtelomeric and

telomeric) chromosomal regions. These results can be

reconciled by comparing the distribution of T-DNA

insertions sites with the distribution of genes in these

species. The small Arabidopsis genome consists of 85%

gene-rich regions that are distributed essentially ran-

domly along the chromosomes, whereas in the cereals

examined, the genes constitute only 10–20% of the

genome and are located at more distal chromosomal

sites. Sequence analysis of the DNA flanking the inser-
www.sciencedirect.com
tion site sequences in Arabidopsis [33] and rice [35] has

confirmed the preferential recovery of T-DNA in gene-

rich regions.

The structure of the transgene loci has also been analyzed

by FISH on interphase nuclei, metaphase chromosomes

and on extended DNA fibers [36–39]. Particle bombard-

ment often generates very large, high-copy-number trans-

genic arrays that can extend for megabases. Interestingly,

earlier studies showed that dispersed metaphase FISH

signals come together at interphase [36]. By contrast,

Agrobacterium transformation gives rise to lower transgene

copy numbers, and is usually characterized by single

discrete FISH signals that are difficult to detect. Improve-

ments in the limits of FISH detection would facilitate the

cytogenetic analysis of transgene integration and interac-

tion.

Fiber FISH, chromatin analysis and
miscellaneous techniques
After the introduction of the fiber FISH technique (which

applies fluorescently labeled probes onto naked DNA

targets) to plant species [40], the procedure has been used

to reveal the fine detail of DNA structure [41,42,43�] and

to confirm the order of BACs in contigs assembled by

other methods [44]. Undesirable DNA rearrangements

can be generated during the creation or propagation of

BAC libraries, especially in regions that contain highly

repetitive sequences. Nagaki and colleagues [43�] com-

pared the FISH probe hybridization signals of centro-

meric DNA elements on genomic fragments with the

location on the corresponding BAC to confirm the lack of

any major rearrangements.

The use of stretched chromatin, a procedure involving a

gentle extension of the chromosome without removing

the associated proteins, has become a useful tool with

which to examine where various chromatin proteins inter-

act with specific DNA sequences. In both maize and

Arabidopsis, stretched chromatin was labeled with anti-

bodies against the centromeric histone protein CENH3

and with centromeric DNA repeats as FISH probes

[45��,46]. This technique allowed the arrangement of

centromeric DNA elements and associated proteins to

be revealed at high resolution.

Another recent study involved extended chromosomes

and examined the detection of FISH signals on stretched

somatic chromosomes [47��]. The procedure used flow-

sorted barley and wheat mitotic chromosomes that were

expanded to 10–100 times their original length. After in
situ hybridization, the fine structure of the target sites on

the chromosomes was revealed. This procedure provides

better resolution of gene and repeated sequence arrange-

ments on a chromosome while maintaining the informa-

tion about the orientation relative to the centromere and

telomere.
Current Opinion in Plant Biology 2005, 8:148–154
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Figure 3

FISH on maize pollen. The red signal represents the supernumerary B-chromosome-specific signal in the sperm (arrows). The green signal

identifies the heterochromatin knob 180-bp sequences, present mainly on the normal A chromosomes. The DNA of the vegetative nucleus and

the two sperm cells were stained with DAPI (blue). (a) Pollen FISH of a maize pollen grain carrying a B chromosome derivative that underwent

normal disjunction at both pollen mitoses to produce the large vegetative nucleus and the two small crescent shaped sperm cells. The B

probe hybridizes to all three nuclei. (b) FISH on maize pollen carrying a normal B chromosome that shows nondisjunction at the second

pollen mitosis so that one sperm has two B chromosomes and the other has none. The B chromosome signals (centromere and long arm

tip) in the vegetative nucleus are weak because they are partially out of the focal plane of the two sperm cells. (Photograph by F Han.)
Last, the development of a FISH procedure for pollen

grains has recently been reported [48–51]. This technique

allowed the investigators to study the behavior of maize

supernumerary B chromosomes in the pollen mitoses

(Figure 3). The B chromosome contains specific seq-

uence repeats that allow its visualization. This technique

established that B chromosome nondisjunction occurs at a

low level at the first pollen mitosis and at a much higher

rate at the second pollen mitosis as predicted from genetic

experiments.

Conclusions
The recent developments in cytogenetics described

above will provide new tools for the analysis of plant

genomes. These techniques allow the study of the fine

details of chromosome structure and will permit sophis-

ticated analyses of chromosomal behavior. As more gen-

omes become sequenced, tools to study chromosomal

organization and behavior will play a greater role in

investigating the function of those genomes.
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