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In plants, as in all eukaryotes, centromeres are chromatin

domains that govern the transmission of nuclear chromosomes

to the next generation of cells/individuals. The DNA composition

and sequence organization of centromeres has recently been

elucidated for a few plant species. Although there is little

sequence conservation among centromeres, they usually

contain tandem repeats and retroelements. The occurrence of

neocentromeres reinforces the idea that the positions of

centromeres are determined epigenetically. In contrast to

centromeric DNA, structural and transient kinetochoric proteins

are highly conserved among eukaryotes. Candidate sequences

have been identified for a dozen putative kinetochore protein

homologues, and some have been localized to plant

centromeres. The kinetochore protein CENH3, which substitutes

histone H3 within centromeric nucleosomes, co-

immunoprecipitates preferentially with centromeric sequences.

The mechanism(s) of centromere assembly and the functional

implication of (peri-)centromeric modifications of chromatin

remain to be elucidated.
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Abbreviations
CBF5p CENTROMERE-BINDING FACTOR5p

CCS1 CEREAL CENTROMERIC SEQUENCE1

CENP-B CENTROMERIC PROTEIN-B

Cpel1 CENP-E-like protein1 of barley

KP kinetochore protein

LTR long terminal repeat

SKP1 SUPPRESSOR OF KINETOCHORE PROTEIN1

Introduction
The centromere of monocentric chromosomes is morpho-

logically recognizable as the primary constriction. Cen-

tromeres are essential for the correct segregation of sister

chromatids into daughter cells during mitosis and meiosis

II, and of homologous chromosomes during meiosis I. In

all eukaryotes, centromeres are responsible for chromatid

cohesion from S-phase until anaphase, for spindle fiber

attachment during metaphase and for chromosome move-

ment during early metaphase and in anaphase. A protein-

aceous kinetochore assembles at active centromeres and

enables chromosome movement [1]. We review recent

developments that have improved our knowledge of the

DNA and protein composition and functional aspects

of plant centromeres and neocentromeres, including

epigenetic modifications within (peri-)centromeres. For

previous reviews on plant centromeres see [2–4].

DNA composition of plant centromeres
In contrast to telomeres, centromeres are not specified by

highly conserved DNA sequences. Centromeric sequences

have been described for several eukaryotes. Except for

the approximately 125-bp centromeres of budding yeast

[5], whose functional importance was verified by muta-

tion analyses, the functional importance of centromeric

sequences is at least controversial. In Vicia faba and

Tradescantia paludosa it has not yet been possible to detect

centromere-specific repeats [6], whereas such sequences

have been found in other plants. For instance, a 178-bp

tandem repeat [7,8] together with intermingled portions

of Athila retroelements [9] (mainly part of this retroele-

ment’s long terminal repeats [LTRs] [10]), forms the

centromere core (�3 Mbp) in Arabidopsis thaliana
[11,12,13�]. This tandem repeat differs significantly in

sequence but not in length (178 � 1 bp) between A.
thaliana accessions [14]. A similar organization (i.e. retro-

elements embedded within short tandem repeat arrays)

has been reported for Drosophila centromeres [15]. For

cereals, two conserved centromere-specific repeats

(CEREAL CENTROMERIC SEQUENCE1 [CCS1]

[16] and Sau3A9 [17]) were reported and later found to

represent parts of a Ty3/gypsy-like retroelement [18,19].

The sequence organization of barley centromeres has

been elucidated by analysis of the 23-kb insert of a

centromere-specific bacterial artificial chromosome

(BAC) clone (BAC 7), which contained three apparently

complete copies of the gypsy-like retroelement ‘cereba’

(�7 kb). Parts of the LTRs of cereba (�1 kb) correspond

to CCS1 and parts of the integrase region of its polygene

to Sau3A9. Cereba-elements, together with a GþC-rich

satellite sequence (AGGGAG)n, constitute the major

DNA components of barley centromeres [19]. Each bar-

ley centromere contains around 200 cereba-elements,

comprising at least 1.4 Mbp. Cereba-related centromeric

retroelement (CR) sequences (including complete and

truncated elements or solo-LTRs) have also been found

within the centromeres of maize, sorghum, wheat, rice,

rye, oats and Aegilops squarrosa [20–26,27�,28], and even in
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dicotyledonous Beta species [29]. In most cases, these re-

troelements were not detectable along chromosome arms.

They have probably occurred within the centromeres of

all grass species since their phylogenetic separation from

other monocots about 60 million years ago, are probably

derived from a single transposon family, are interspersed

irregularly between centromeric satellite sequences and

are apparently still able to transpose [25,27�,28].

In addition, Ty1/copia-like elements have been found in

the centromeres of rye (in the polygene region Bilby [30])

and Zingeria biebersteiniana [31]. The satellite sequences

that occur within the centromeres of most eukaryotes

are usually species-specific and possibly represent struc-

tural homologues of the alphoid satellite of human cen-

tromeres. Nevertheless, some contain CENTROMERIC

PROTEIN-B (CENP-B)-box-like sequences [8,32],

which bind the conserved transposase-like protein

CENP-B in human centromeres. These sequences show

similarity in rice and maize [27�], although no conserved

CENP-B protein has been found outside of mammals and

fission yeast. The centromere of maize chromosome 4 also

contains repeats that are present in the centromeres of B

chromosomes and that are similar to parts of repeats from

potentially neocentromeric knobs [33]. Centromeric

satellites and retroelements are preferentially immuno-

precipitated with a maize homologue of the human cen-

tromeric histone H3 variant CENP-A [34�]. All of the

breakpoints from 14 centromere-misdivision events in

rice were mapped within the centromeric satellite arrays

[27�]. Robertsonian wheat-rye translocation chromosomes

that had centromeres composed of similar proportions of

wheat and rye centromeric DNA behave normally during

mitosis and meiosis [35]. Maize mini-B-chromosomes

that contained centromeric repeats of less than 1000 kb

showed reduced meiotic transmission, those with centro-

meric repeats of less than 500 kb also showed reduced

mitotic transmission [36]. All of these observations sug-

gest that centromeric satellites and retroelements are

functionally important. Barley telosomes and isochromo-

somes that lack cereba and centromeric satellite sequences

are mitotically and meiotically stable [37], and possibly

indicate the formation of neocentromeres that do not

require the presence of such sequences.

Large-scale sequence organization of centromeres has

been reported for A. thaliana (reviewed in [13�]), rice

[24,27�], maize [28], barley [19] and Beta [38].

Protein composition of plant kinetochores
Contrary to centromeric DNA, structural and functional

kinetochore proteins are highly conserved between yeast

and metazoa. Almost fifty proteins are constitutively or

transiently associated with S. cerevisiae centromeres (see

also [39]), and more than 20 kinetochore proteins (KPs)

are known to occur in human centromeres and neocen-

tromeres [40]. The KPs of human neocentromeres are

free of detectable centromeric alphoid satellite sequences

[40]. The occurrence of neocentromeres (about 50 are

known in humans [41]) supports the assumption that

centromere formation is regulated epigenetically and,

once established, remains stable [42,43].

Human CREST (calcinosis, Raynaud’s phenomenon, eso-

phageal dismotility, sclerodactyly, telangiectasia) antisera

from patients with a variant of scleroderma have previously

been used to label animal kinetochores [44]. Two CREST

sera were the first reagents used to identify plant kine-

tochores [45,46]. Currently, the most promising method for

the identification of plant KPs is to carry out similarity

searches within plant genomic and expressed sequence tag

(EST) databases for sequences that correspond to non-

plant KPs. The plant KPs identified to date by sequence

similarity/immunolocalization are listed in Table 1.

It has been suggested that the evolutionarily conserved

centromere-specific histone-H3-like protein CENH3

(the human variant is CENP-A) determines the chromo-

somal position of kinetochore assembly and forms a link

between the centromeric DNA and the proteinaceous

kinetochore [47]. Indeed, histone H3 is replaced by

CENH3 within the nucleosomes of active centromeres

in several non-plant species [48], and all of the KPs

examined were mislocated when CENH3 was disrupted

[49,50]. CENH3 homologues of A. thaliana (designated

HTR12 [51]) and maize [34�] have been identified

through database searches and were found at centromeres

throughout the cell cycle. CENH3 evolves rapidly; the

known CENH3 proteins share a common histone H3 core

sequence but diverge in their amino-terminal tails and in

the internal loop 1 region [52]. The co-adaptive evolution

of CENP-A-like KPs and centromeric repeats was

reported to have taken place in Drosophila and Arabidopsis
[53]. CENH3 of maize was found to co-localize with

CENPC in the inner kinetochore, in a region beneath

an outer regulatory domain that contains the cell-cycle

checkpoint protein MAD2 and the unidentified 3F3/2

antigen [34�,54]. Because of its close association with

DNA, CENH3 of maize has been used to identify the

centromere sequences that interact with the kinetochore.

Chromatin immunoprecipitation revealed that the Arabi-
dopsis 178-bp satellite repeat [55], the maize centromeric

CentC tandem repeat arrays and the centromeric retro-

transposon CRM preferentially interact with CENH3,

whereas non-centromeric sequences do not [34�].

The DNA-binding protein CENP-C is a fundamental

component of the centromere, is highly conserved among

species and is necessary for the proper assembly of the

kinetochore structure and for the metaphase!anaphase

transition [56]. A CENP-C-like KP of maize [57] might

represent a hybrid protein that is partially homologous to

human CENP-C and partially homologous to another

protein apparently located within human centrosomes
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[58]. CENP-E is one of the KPs that are involved in

chromosome motility and spindle checkpoint control.

When this kinesin-like protein is depleted from mamma-

lian kinetochores, incomplete chromosome alignment dur-

ing metaphase and subsequent mitotic arrest result [59].

The cross-reactivity of antibodies against human CENP-E

with kinetochores from field bean and barley indicated

that KPs similar to CENP-E might occur in plants [58].

Indeed, two putative CENP-E-like KPs of barley (Cpel1

and Cpel2) have been identified. Cpel2 is the most likely

candidate for a plant CENP-E homologue; Cpel1 shows

similarity to the coiled-coil domain of CENP-E but does

not possess a kinesin motor domain [60].

Putative homologues of the centromere-binding factor

CBF5p and the yeast KP SUPPRESSOR OF KINETO-

CHORE PROTEIN1 (SKP1), which is part of the CBF2

complex and interacts with the centromeric DNA ele-

ment II (CDEII) of yeast centromeres, are apparently

present in plant kinetochores. Their metazoic homolo-

gues are located within centrosomes (SKP1) or nucleoli

(the human CBF5 homologue, dyskerin) [58].

The disruption of putative KP genes by T-DNA or their

silencing using RNAi approaches is expected to elucidate

the functional importance of plant KPs in vivo.

Pericentromere-specific chromatin
modifications
Specific post-translational modifications of histone H3 at

pericentromeres are known to occur in metazoa and

plants. In plants, serine 10 ([61]; Figure 1) and 28 [62]

of H3 are strongly phosphorylated at pericentromeres

during mitosis and during the second meiotic division

from prophase until telophase. During the first meiotic

division, this modification occurs along entire chromo-

somes (as is the case for monocentric animal chromosomes

during all nuclear divisions). Single chromatids that result

from the equational division of univalents at anaphase I,

have almost no pericentromeric phosphorylation during

the second meiotic division. It has been assumed that H3

phosphorylation is required for the cohesion of sister

chromatids during metaphase I and of sister chromatid

centromeres during mitosis and metaphase II [63,64].

This assumption was further supported by observations

of a maize mutant that was defective in sister chromatid

cohesion. In this mutant, the univalents at metaphase I

were strongly phosphorylated only in the pericentromeric

regions [63]. Similarly, a ‘semi-dicentric’ barley chromo-

some revealed hyperphosphorylated H3 only at the

functional centromere [61], whereas the polycentric chro-

mosomes of Luzula luculoides were hyperphosphorylated

along the entire chromosomes during mitosis [62].

Pericentromeres of A. thaliana are characterized by het-

erochromatin-specific dimethylation of histone H3 at

lysine 9 and by strong DNA methylation, both of which

are considered to be involved in heterochromatin assem-

bly [65]. On the basis of studies carried out in fission yeast

[66–68], Dawe [69�] discussed the possibility that RNA

interference (using small transcripts from centromeric

retroelement-derived sequences) and histone H3 lysine

Table 1

Known plant kinetochore proteins�.

Type Yeast Fruit fly Human/mouse Plant

Structural proteins SKP1 [81] p19Skp1a [82] ASK1–9b, Skp1 [58,83]

Cse4 [84] CID [49] CENP-A [48] HTR12, CENH3 [34�,51]

Mad, mitotic arrest deficient Mif2 [85] CENP-C [86] ZmCENP-C [57,58]

CBF5 [87] Nop60Bs [88] Dyskerinc [89] CBF5 [58]

Motor proteins Kar3p [90] CENPmeta [91] CENP-E [59] Cpel1, Cpel2 [60]

Passenger proteins CENP-F [92] CENP-F antigend [58]

Checkpoint proteins Mad2 [93] hMad2 [94] Mad2 [54]

Zw10 [95] hZw10 [95] Zw10b [95]

Bub1 [96] dBub1 [97] hBub1 [98] Bub1-likeb (e)

3F3/2 antigen [54] 3F3/2 antigend [54]

Bub3 [99] dBub3 [97] Bub3 [100] Bub3-likeb (e)
Spindle-associated proteins g-tubulin antigena g-tubulin antigend [101]

�Modified according to R ten Hoopen, unpublished data.
aCentrosomal localization
bOnly DNA-sequence data
cNucleolus localization
dAntigen only detected by immunostaining
eR ten Hoopen, unpublished data

Abbreviations: ASK, associated with spindles and kinetochores; Bub1, budding unsensitive to benomyl1; CID, centromere identifier; Cse4, defects

in mitotic chromosome segregation; Mif2, affecting mitotic fidelity; Nop60Bs, nucleolar protein that maps to chromosomal band 60B13-C1s;

Zw10, protein product of the Drosophila melanogaster gene I zw10.

556 Cell biology

Current Opinion in Plant Biology 2003, 6:554–560 www.current-opinion.com



9 methylation (recruiting HETEROCHROMATIN

PROTEIN1 [HP1]) is used as an epigenetic mechanism

in eukaryotes to establish the specific chromatin organi-

zation of centromeres that is required for chromosome

segregation. Centromere dysfunction has not, however,

been reported for Arabidopsis mutants that are character-

ized by a reduced degree of DNA methylation and H3

lysine 9 dimethylation at pericentromeric chromocenters

(e.g. DNA methylation1 [ddm1] and methyl transferase1
[met1]), nor for the kryptonite (kyp) mutant, which has a

high level of DNA methylation but low H3 lysine 9

dimethylation at the chromocenters.

Neocentromeres
Most plant neocentromeres differ from those described

for humans [70] and Drosophila melanogaster [71] because

they occur on chromosomes that have a normal centro-

mere. Plant neocentromeres, which are best known in

maize and rye, appear during meiosis rather than during

mitosis. Maize neocentromeres occur in terminal hetero-

chromatic domains called knobs, which are composed

mainly of tandem repeats that differ from those of regular

centromeres [20,72]. Neocentric activity results in pre-

ferential migration (i.e. meiotic drive) and causes chro-

mosomes with such knobs to accumulate in the progeny

[73,74]. The neocentromeres become active in the pre-

sence of an abnormal chromosome 10 (Ab10), which has

an extra segment containing at least two genes that

control the neocentric activity [75]. Thus, the presence

of heterochromatin is necessary but not sufficient for

neocentromere activity at interstitial or terminal chromo-

somal positions. CENP-C, a constitutive component of

the maize kinetochore, is missing at the neocentromeres

and so it has been suggested that maize neocentromeres

possess a simplified type of kinetochore [57]. In rye, no

centromere-specific repeats (i.e. CCS1 [16] and Bilby [30])

have been found, but non-centromeric tandem repeats

were detected by in-situ hybridization within the terminal

regions that show potential neocentric activity [76,77]. It

remains to be seen whether the functional centromeres of

barley telosomes that lack centromere-specific satellite

and cereba sequences [37] harbor known plant KPs and

represent neocentromeres that were formed after the loss

of regular centromeric sequences.

Conclusions
Centromeric repetitive sequences are not highly con-

served and may not be sufficient (e.g. the inactive cen-

tromeres of some human dicentric chromosomes) or

necessary (e.g. neocentromeres) for the assembly of func-

tional kinetochores. Nevertheless, clusters of tandem

repeats that are interspersed with retroelements are typi-

cal features of the regular centromeres of most studied

plants. Whether RNA interference [69�] and/or stretching

of centromeric chromatin, caused by the bi-orientation

of sister centromeres during nuclear division [39], gen-

erate the landmarks for the initiation/maintenance of

kinetochore assembly (i.e. loading of CENP-A-like

Figure 1

High-resolution immunogold scanning electron microscopy supports the view that the phosphorylation of histone H3 at serine 10 accumulates

in pericentromeric chromatin (yellow signals) as mitosis progresses towards metaphase [78]. The signal gap represents the core centromere,

which is characterized by parallel chromatin fibers and which has less DNA and more protein than chromosome arms [79]. This agrees with the

observation that histone H3 is replaced by the evolutionarily conserved centromere-specific histone H3-variant CENP-A within the core centromere

[80]. Image kindly provided by G Wanner and E Schroeder-Reiter.
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histone H3 variants into centromeric nucleosomes)

remains to be elucidated. Future work will reveal the

extent to which homologues of KPs from non-plant

species are present, replaced or substituted in plant

centromeres, and which modifications/interactions are

necessary to ensure proper centromere function.

Despite the generally high variability of centromeric

DNA and some differences in protein composition, it

is clear that the basic features of plant kinetochore

assembly and function are conserved with other eukar-

yotes. Understanding the minimum requirements for

functional centromeres will be important in understand-

ing what is needed for the generation of artificial plant

chromosomes as vectors for gene transfer.
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