生态学时空分享 http://blog.sciencenet.cn/u/lionbin 自我营造一个可持续发展的学术生态系统

博文

忽视叶片水分损失可能带来气候模型的巨大误差 精选

已有 5263 次阅读 2017-7-3 10:32 |个人分类:读书笔记|系统分类:科研笔记|关键词:叶片水分损失 气候模型 光合作用

长期以来,人们认为植物失水的主要途径是通过植物叶片的气孔,而叶片的表皮失水几乎可以忽略不计。根据最新的研究进展,科学家们忽略计算植物叶片水分损失中的这样一个误差,可能对估算植物通过光合作用所产生的能量带来偏差,这也可能危及全球气候模型,而且当植物处于供水严重不足的条件时,这些错误会显得特别明显[1]

碳循环与水循环是陆地生态系统重要的生物化学过程和水文过程,同时它们的变化又可以反映陆地生态系统对气候变化的响应和适应过程。理论上,陆地生态系统的碳循环与水循环并非各自独立碳,而是相互制约的。从叶片水平来说,植物在进行光合作用时,气孔张开以便吸收大气中的二氧化碳,当水分丰富时,叶片气孔尽量张开以便让更多二氧化碳进入,使光合作用最大化,而随着气孔的张开,植物的水分又因蒸腾作用而损失。如果水分比较贫乏,或者发生水分胁迫时,叶片又会通过关闭气孔来阻止光合作用[2,3]。也就是说,植物气孔的活动会在获取更多的碳和失去更少的水分之间进行权衡(图)。虽然植物也可以通过叶片的表皮失水,但相比前者几乎可以忽略不计。因此,大多数研究人员认为,植物叶片水分损失与二氧化碳吸收之间存在一定的“耦合”,并将之推广到计算二氧化碳进入叶片的通量中。

图 气孔开闭与碳水之间的权衡


测量叶片内部的二氧化碳需要繁琐的专门定制设备,而叶片水分损失则容易测定,所以野外研究人员一般通过测定叶片水分损失来计算二氧化碳浓度。一旦获得了叶片中二氧化碳浓度,就可以计算出植物将之转化为能源物质的有效性,这是初级生产力的重要组分,也是一些气候模型的重要因子。

这种计算是基于通过气孔的水分流失的,忽视了直接通过表皮的水汽蒸发。最近的实验表明,当水充足时,该近似结果是可行的,但当水分很少时,气孔会关闭,就有很大比例的水分通过表皮蒸发。如果这一点不能进行调整,可能就难于计算植物在光合作用过程中如何将CO2转化为糖。也就是说,在气孔关闭的条件下,继续忽略叶片表皮水蒸发可能是一个巨大的错误。

2015年,Hanson首先意识到了这个问题,在一次研讨会上,Hanson用数据展示了叶片细胞的性质如何限制其对二氧化碳的捕获,Boyer为他提供了另外一个解释——通过表皮的水分损失,并描述了他实验室在1980年代所收集的数据,那个时候几乎没有引起什么注意。Boyer的研究小组发现,当水分丰富、气孔张开时,叶片表皮损失的水分会使向日葵叶中二氧化碳浓度的计算偏高15%。当气孔完全关闭时,预测的二氧化碳浓度比叶片内直接测定的值高六倍。

叶片内的二氧化碳是气候模型的核心特征,也有助于人们理解光合作用是如何运作的。于是,接着六个月时间,Hanson就着手进行第一个测量。显然,这里尽量消除测量误差显然是很重要的,所以Hanson也试图简化测量方法,以便其他实验室也可以按照同样的方法进行更多测试。

当然也有反对的意见。植物生理学家Donald Ort说,这个问题虽然很有趣,但可能意义不大,因为只有在极度干旱的条件下,通过表皮的水分损失才会显得比较重要。对于全球的初级生产力估算来说,应该没有什么影响。

Hanson反驳说,在他尚未发表的一项有关油菜(Brassica napus)的研究中,由于没有考虑到表皮水分损失的问题,结果即使在水分条件良好的情况下,也高估了水分通过气孔损失达12.6%。

点评:从生态系统水平来看,除了植物呼吸,土壤呼吸还通过土壤孔隙向大气释放二氧化碳,同时也伴随物理性蒸发和生物蒸腾作用将水分散失到空气中,因此陆地生态系统中碳、水循环通过光合作用、呼吸作用以及蒸发散过程构成了更为复杂的联系。


参考资料
[1] Overlooked water loss in plants could throw off climate models, Nature 546, 585–586 (29 June 2017) doi:10.1038/546585a
[2] Kurc, S. A., and E. E. Small (2007), Soil moisture variations and ecosystem-scale fluxes of water and carbon in semiarid grassland and shrubland,
Water resources research, 43(6), W06416.
[3] Luxmoore, R. J. (1991), A source–sink framework for coupling water, carbon, and nutrient dynamics of vegetation,
Tree Physiology, 9(1-2), 267-280.




http://blog.sciencenet.cn/blog-502444-1064302.html

上一篇:《富足:改变人类未来的4大力量》书评
下一篇:认知升级、化敌为友、拥抱技术、共建富足
收藏 分享 举报

22 赵建民 魏焱明 吕喆 沈律 王德华 鲍鹏 赵克勤 黄永义 曹建军 檀成龙 杨正瓴 陈智文 李毅伟 李建国 张晓良 杨学祥 蔡庆华 陆泽橼 杨秀海 aliala xlsd hyhuo

该博文允许注册用户评论 请点击登录 评论 (8 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备14006957 )

GMT+8, 2017-9-24 04:13

Powered by ScienceNet.cn

Copyright © 2007-2017 中国科学报社

返回顶部