active分享 http://blog.sciencenet.cn/u/jjb8104149 There is nothing permanent except change

博文

Ecological and Conservation Genomics

已有 4599 次阅读 2013-6-9 12:58 |个人分类:未分类|系统分类:科研笔记| Conservation, genomics, GBS, RAD-Seq

With the develpment of sequencing technology and experimental protocol, more and more ecological and conservtion researchers have used genomics tools decoding the problem of the ecology and conservation. With the ecological and genomics informations of the threatened species, it maybe very useful for  converation or understand the diversity of these speices.The following is a lot of reserach in the  Ecological and Conservation Genomics. In here, I just list some reseach paper in the order of the species.

 

1、Panda

Zhao, S., P. Zheng, et al. (2013). "Whole genome sequencing of giant pandas provides insights into demographic history and local adaptation." Nat Genet 45(1): 67-71.

 

2、Polar Bear

Hailer, F., V. E. Kutschera, et al. (2012). "Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage." Science 336(6079): 344-347.

Miller, W., S. C. Schuster, et al. (2012). "Polar and brown bear genomes reveal ancient admixture and demographic footprints of past climate change." Proc Natl Acad Sci U S A 109(36): E2382-2390.

Cahill JA, Green RE, Fulton TL, Stiller M, Jay F, et al. (2013) Genomic Evidence for Island Population Conversion Resolves Conflicting Theories of Polar Bear Evolution. PLoS Genet 9(3): e1003345. doi:10.1371/journal.pgen.1003345

 

3、Tiger

Xu et al., The Genetic Basis of White Tigers, Current Biology (2013), j.cub.2013.04.054http://dx.doi.org/10.1016/

 

4、Threespine stickleback

Jones, F. C., M. G. Grabherr, et al. (2012). "The genomic basis of adaptive evolution in threespine sticklebacks." Nature 484(7392): 55-61.

Hohenlohe, P. A., S. Bassham, et al. (2010). "Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags." PLoS Genet 6(2): e1000862.

Catchen, J., S. Bassham, et al. (2013). "The population structure and recent colonization history of Oregon threespine stickleback determined using restriction-site associated DNA-sequencing." Mol Ecol 22(11): 2864-2883.

Roesti, M., D. Moser, et al. (2013). "Recombination in the threespine stickleback genome patterns and consequences." Mol Ecol 22(11): 3014-3027.

 

5、Sturgeon

Ogden, R., K. Gharbi, et al. (2013). "Sturgeon conservation genomics: SNP discovery and validation using RAD sequencing." Mol Ecol 22(11): 3112-3123.

 

6、Pacific lamprey

Hess, J. E., N. R. Campbell, et al. (2013). "Population genomics of Pacific lamprey: adaptive variation in a highly dispersive species." Mol Ecol 22(11): 2898-2916.

 

7、herring Clupea harengus

Corander, J., K. K. Majander, et al. (2013). "High degree of cryptic population differentiation in the Baltic Sea herring Clupea harengus." Mol Ecol 22(11): 2931-2940.

 

8、Senecio lautus

Roda, F., L. Ambrose, et al. (2013). "Genomic evidence for the parallel evolution of coastal forms in the Senecio lautus complex." Mol Ecol 22(11): 2941-2952.

 

9、Bank vole (Myodes glareolus)

White, T. A., S. E. Perkins, et al. (2013). "Adaptive evolution during an ongoing range expansion: the invasive bank vole (Myodes glareolus) in Ireland." Mol Ecol 22(11): 2971-2985.

 

10、Xiphophorus fish

Jones, J. C., S. Fan, et al. (2013). "The evolutionary history of Xiphophorus fish and their sexually selected sword: a genome-wide approach using restriction site-associated DNA sequencing." Mol Ecol 22(11): 2986-3001.

 

11、 Rainbow and westslope cutthroat trout

Hohenlohe, P. A., M. D. Day, et al. (2013). "Genomic patterns of introgression in rainbow and westslope cutthroat trout illuminated by overlapping paired-end RAD sequencing." Mol Ecol 22(11): 3002-3013.

 

12、Lake Whitefish (Coregonus clupeaformis)

Gagnaire, P. A., E. Normandeau, et al. (2013). "Mapping phenotypic, expression and transmission ratio distortion QTL using RAD markers in the Lake Whitefish (Coregonus clupeaformis)." Mol Ecol 22(11): 3036-3048.

Hecht, B. C., N. R. Campbell, et al. (2013). "Genomewide association reveals genetic basis for the propensity to migrate in wild populations of rainbow and steelhead trout." Mol Ecol 22(11): 3061-3076.

 

13、Lake Tanganyika cichlid fish and Lake Victoria cichlid fishes

Takahashi, T., T. Sota, et al. (2013). "Genetic basis of male colour dimorphism in a Lake Tanganyika cichlid fish." Mol Ecol 22(11): 3049-3060.

Keller, I., C. E. Wagner, et al. (2013). "Population genomic signatures of divergent adaptation, gene flow and hybrid speciation in the rapid radiation of Lake Victoria cichlid fishes." Mol Ecol 22(11): 2848-2863.

 

14、 Cepaea nemoralis

Richards, P. M., M. M. Liu, et al. (2013). "RADSeq derived markers flank the shell colour and banding loci of the Cepaea nemoralis supergene." Mol Ecol 22(11): 3077-3089.

 

15、Dwarf birch (Betula nana)

Wang, N., M. Thomson, et al. (2013). "Genome sequence of dwarf birch (Betula nana) and cross-species RAD markers." Mol Ecol 22(11): 3098-3111.

 

16、 Eurasian beaver

Senn, H., R. Ogden, et al. (2013). "Reference-free SNP discovery for the Eurasian beaver from restriction site-associated DNA paired-end data." Mol Ecol 22(11): 3141-3150.

 

17、Red abalone (Haliotis rufescens)

De Wit P, Palumbi SR (2013) Transcriptomewide polymorphisms of red abalone (Haliotis rufescens) reveal patterns of gene flow and local adaptation. Molecular Ecology, 22, 2884–2897.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



http://blog.sciencenet.cn/blog-491809-697941.html

上一篇:The Interesting research about penis
下一篇:Dolphin

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2020-7-7 05:55

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部