尤明庆的博客分享 http://blog.sciencenet.cn/u/youmingqing 何苦来哉?心不忍耳!

博文

喝酒划拳中的数学(附:摇号) 精选

已有 3279 次阅读 2018-12-5 22:28 |个人分类:文史闲谈|系统分类:观点评述| 条件概率

冯老师的博文介绍了划拳的历史及相关知识,学习之后颇有收获。文中特别提及数学内容,称两人出拳数字相加所得之和的概率是不相同的,以得五的概率最大,得零和十的概率最小。不过,实际划拳或猜枚或许与此略有些不同。

甲乙两人各出0~5 之间的一个数字,其和为0~10;若随机出数则结果是概率最大,为 6/36结果是零或十的概率最小,只有1/36。这是当然的。

不过,划拳者所报数字与其所伸指头的数目相关,如伸两个指头,则通常会报数2~7;不管报出其中的哪一个数,正确的概率都是1/6——正确与否取决于对方所伸指头的数目;而旁观者猜二、三、四、五、六、七时正确的概率是3/364/365/366/365/364/36。其间存在差别。

当局者是在6个数字中猜测,而旁观者是在11个数字中猜测。掌握的信息不同,判断的准确性当然不同。仅举一个例子予以说明:旁观者预猜结果为三,因甲方有4/6 的可能出零~三,基于乙方的所出指头数目,各有1/6的可能正确;而甲方有2/6 的可能出 四和五,则不管乙方所出都是不可能正确;于是,

其猜对概率是4/6 *1/6+2/6*0=4/36

最后说句题外话。若酒席有目盲而耳聪者,其听到两位划拳者所报数目之后可以更准确地猜出结果,除非双方都叫“五魁首”而完全不透漏信息。

科学网博客曾经基于医学检查讨论条件概率的问题,似乎有些复杂难解。划拳问题相对简单,或许有助于理解“信息”对判断准确性的重要作用。

附录:摇号

有博文讨论“真随机数”,想到“经适房的六连号”。作为数学问题就是,从M 个元素中随机选取 m 个出现 k 连号的概率(k ≤ m)。 

对于LHK 市摇号,有= 1138, m = 514, k = 14,相应的概率为 0.01500,即14连号概率为1.5%;而WH 市摇号,M = 5141, m = 124, k = 6, 相应的概率为8.970*10^(–7),略小于百万之一。网上许多文章称:“这种结果出现的概率仅为千万亿分之一”,似乎有误。

或许有人会说,现在只出现一次连号,没有出现两次以上的连号,没有出现k–1 连号,也没有出现k+1 连号,等等,实际概率比上面的计算值还要低;因而,……

随机发生的事情在发生之后就是确定的,通常不能再分析事件发生的概率。不过,摇号过程不够透明,有时结果比较奇特而引起民众的误解和猜疑;猜疑若不能平息则会损伤公信力。就此而言,摇号程序要简单、明确,结果随机但事后任何人都可以“复盘”确认 

申请截止后迅速公布如下内容:(1) 合格申请数 M,摇号数m,摇号日期 等(2) 中奖者序号为 M*n+1 之整数部分,nsqrt (A+jπ) + sqrt (B+jπ) + sqrt (C+jπ) 之小数部分;(3) 参数A 、BC均为两位数,如A 为摇号前一日沪市收盘指数的数字之和,B 为摇号前一日某外汇牌价等的数字之和,C 为摇号现场随机产生(产生方法也应公布),等等j=1 to m。如果出现重复结果,则参数j相应顺延。 

如此摇号就是一个确定-随机-确定的过程,公开-透明-公正的过程。当然,计算公式可以改变;参数π 可以改为 e或者根号2;数字C可以由现场嘉宾、公证员以及申请者共同确定,等等。相关内容只要预先公布就行。

网上文章称:某地摇号51次,有近9 万人一次就中,而14201人参加51未中。摇号是没有办法的办法,结果肯定不能公平;不过,只要摇号过程可以“复盘”就不会产生猜疑啊。



http://blog.sciencenet.cn/blog-275648-1150035.html

上一篇:几个常见的地名和山名

22 郑永军 李颖业 冯大诚 朱晓刚 武夷山 逄焕东 李俊 赵凤光 丰成君 杨正瓴 黄永义 孙杨 张晓良 刘全慧 王从彦 刘光银 张云 刘钢 谢力 史晓雷 王满喜 刘炜

该博文允许注册用户评论 请点击登录 评论 (15 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备14006957 )

GMT+8, 2018-12-14 02:43

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部