王飞跃的个人博客分享 http://blog.sciencenet.cn/u/王飞跃

博文

平行动态规划

已有 4088 次阅读 2017-3-7 14:06 |系统分类:博客资讯

PDP: Parallel Dynamic Programming

Fei-Yue Wang, Fellow, IEEE, Jie Zhang, Member, IEEE, Qinglai Wei, Member, IEEE, Xinhu Zheng, Student Member, IEEE, and Li Li, Fellow, IEEE

Institute of Automation, Chinese Academy of Sciences, NationalUniversity of Defense Technology, Qingdao Academy of Intelligent Industries,Tsinghua University, China, University of Minnesota, USA

Abstract: Deep reinforcement learning is a focus research area inartificial intelligence. The principle of optimality in dynamic programming isa key to the success of reinforcement learning methods. The principle ofadaptive dynamic programming (ADP) is first presented instead of direct dynamicprogramming (DP), and the inherent relationship between ADP and deepreinforcement learning is developed. Next, analytics intelligence, as the necessaryrequirement, for the real reinforcement learning, is discussed. Finally, theprinciple of the parallel dynamic programming, which integrates dynamicprogramming and analytics intelligence, is presented as the futurecomputational intelligence.

Index Terms: Parallel dynamic programming, Dynamic programming, Adaptive dynamicprogramming, Reinforcement learning, Deep learning, Neural networks, Artificialintelligence.

Citation: F.-Y. Wang, J. Zhang, Q. L. Wei, X. H. Zheng, and L. Li, “PDP: paralleldynamic programming,” IEEE/CAA Journal of Automatica Sinica, vol. 4, no. 1, pp.1-5, Jan. 2017.

Full Text-PDF:

PDP Parallel Dynamic Programming.pdf

FullText-HTML: http://html.rhhz.net/ieee-jas/html/20170101.htm

Figs:

Fig. 1. ADP structure.


Fig. 2. The HDP structure diagram.



Fig. 3. Deep neural network structure of HDP.

Fig. 4. The ACP approach of descriptive, predictive, and prescriptive analytics.

Fig. 5. Parallel dynamic programming with three parallel systems.



http://blog.sciencenet.cn/blog-2374-1038041.html

上一篇:[转载]《自动化学报》43卷2期网刊已经发布, 敬请关注, 谢谢
下一篇:[转载]IEEE/CAA JAS第4卷第1期网刊已发布,欢迎关注!

3 陆泽橼 李本先 罗春元

该博文允许注册用户评论 请点击登录 评论 (1 个评论)

数据加载中...

Archiver|科学网 ( 京ICP备14006957 )

GMT+8, 2017-5-26 04:16

Powered by ScienceNet.cn

Copyright © 2007-2017 中国科学报社