# 一切物体的基本特性和运动规律 (5)

((4))

21. 静电力与其相应的引力相比，其引力可忽略。

f(3m1m2)[1线矢]=km1m2{{r(3m1m2)j[基矢j],j=13求和}

/(r(3m1m2)j^2,j=13求和)^(3/2)}

f(3m1m2) =km1m2/(r(3m1m2)^2

k是引力常量约=6.685x10^(-8) [厘米]^3/([][]^2)

=6.685x10^(-38) [千亿米]^3/([千克][]^2)

k的量纲[K]: [M]^(-1)[L]^3 [T]^(-2)

f(3q1q2)[1线矢]=q1q2{{r(3q1q2)j[基矢j],j=13求和}

/(r(3q1q2)j^2,j=13求和)^(3/2)}

f(3q1q2) =q1q2/(r(3q1q2)^2

引力常量k的量级非常小，因而，对于带电粒子的电磁力，使得其引力，完全可以忽略不计。

q的量纲[Q]: {[M] [L]^3 [T]^(-2)}^(1/2)

=[M]^(1/2)[L]^(3/2) [T]^(-1)

各带电粒子的各相应的质量，相应的运动，当然也有相应的动量、力、能，也产生相应的静止质量=0的光子，光子的运动，当然也有相应的质量、动量、力、能。

22. 电磁力

带粒子还有正、负电荷，就还有，

q1q2间的电磁势：

s(4q1q2)[1线矢]=q1[1线矢]/r(4q1q2)

=q1{ [基矢j],j=03求和}

/{r(4q1q2)a^2[基矢j],a=03求和}^(1/2)

q1q2间的电磁场强度:

=q2(4) [1线矢]叉乘s(4)[1线矢]

=q2{((4)Ak/rl-(4)Al/rk)[kl基矢]

+((4)Aj/r0-(4)A0/rj)[0j基矢],jkl=123循环求和}

=q2 q1{ ((4)(rk/(ra^2,a=03求和)^(3/2))/rl

-(4)(rl/(ra^2,a=03求和)^(3/2))/rk)[kl基矢]

+ ((4)(rj/(ra^2,a=03求和)^(3/2))/r0

-(4)(r0/(ra^2,a=03求和)^(3/2))/rj)[0j基矢]

,jkl=123循环求和}

=q2 q1{ ((4)(r2/(ra^2,a=03求和)^(3/2))/r3

-(4)(r3/(ra^2,a=03求和)^(3/2))/r2)[23基矢]

+ ((4)(r3/(ra^2,a=03求和)^(3/2))/r1

-(4)(r1/(ra^2,a=03求和)^(3/2))/r3)[31基矢]

+ ((4)(r1/(ra^2,a=03求和)^(3/2))/r2

-(4)(r2/(ra^2,a=03求和)^(3/2))/r2)[12基矢]

+ ((4)(r1/(ra^2,a=03求和)^(3/2))/r0

-(4)(r0/(ra^2,a=03求和)^(3/2))/r1)[01基矢]

+(4)(r2/(ra^2,a=03求和)^(3/2))/r0

-(4)(r0/(ra^2,a=03求和)^(3/2))/r2)[02基矢]

+(4)(r3/(ra^2,a=03求和)^(3/2))/r0

-(4)(r0/(ra^2,a=03求和)^(3/2))/r3)[03基矢]

= H(3)[1线矢]+icE(3)[1线矢],

H(3)的量纲是：[Q]^2[L]^(-2) =[M] [L][T]^(-1)

E(3)的量纲是：[Q]^2[L]^(-3) =[M] [T]^(-2)

H(3)=ic E(3)量纲，

4维时空电磁力[1-线矢]=FEH(4)[1-线矢]

=v(4)[1-线矢]点乘电磁场强度(6)[2线矢]

=q2 q1{vk ((4)(rk/(ra^2,a=03求和)^(3/2))/rl

-(4)(rl/(ra^2,a=03求和)^(3/2))/rk)[l基矢]

+vl((4)(rk/(ra^2,a=03求和)^(3/2))/rl

-(4)(rl/(ra^2,a=03求和)^(3/2))/rk)[k基矢]

+v0((4)(rj/(ra^2,a=03求和)^(3/2))/r0

-(4)(r0/(ra^2,a=03求和)^(3/2))/rj)[j基矢]

+vj((4)(rj/(ra^2,a=03求和)^(3/2))/r0

-(4)(r0/(ra^2,a=03求和)^(3/2))/rj)[0基矢]

,jkl=123循环求和

=v(4)[1-线矢]叉乘电磁场强度(6)[2线矢]

=q2 q1{v0 ((4)(rk/(ra^2,a=03求和)^(3/2))/rl

-(4)(rl/(ra^2,a=03求和)^(3/2))/rk)[0kl基矢]

+vj((4)(rk/(ra^2,a=03求和)^(3/2))/rl

-(4)(rl/(ra^2,a=03求和)^(3/2))/rk)[jkl基矢]

+vk((4)(rj/(ra^2,a=03求和)^(3/2))/r0

-(4)(r0/(ra^2,a=03求和)^(3/2))/rj)[0jk基矢]

+vl((4)(rj/(ra^2,a=03求和)^(3/2))/r0

-(4)(r0/(ra^2,a=03求和)^(3/2))/rj)[0jl基矢]

,jkl=123循环求和

=v(3)[1-线矢]叉乘(H(3)[1线矢]+icE(3)[1线矢])

=磁力[1线矢]+电力[1线矢]

(4维时空的叉乘与点乘，彼此正交；所产生3维空间的磁力与电力，彼此正交。

q2 q1，互为正、负，则为吸力，同为正、负，则为斥力，运动方程都有不同能级，带电粒子在不同能级的跃迁，均可辐射相应的光子。

q的量纲：[M]^1/2[L]^3/2 [T]^(-1)

电荷q的质量m=q^2/(r(3)v(3)^2)(3维空间质量)

=q^2/(r(4)v(4)^2)(4维时空运动质量)

m v(4)=q^2/(r(4)v(4))(4维时空)

m v(4) ^2/2=q^2/(2r(4))(4维时空)

(未完待续)

http://blog.sciencenet.cn/blog-226-1188995.html

## 全部精选博文导读

GMT+8, 2019-8-19 01:09