冯向军的科学研究博客分享 http://blog.sciencenet.cn/u/冯向军 在本博客中专门从事以统计力学为核心的理论物理研究。

博文

概率:决定性事件复杂程度最简单而又最根本的测度

已有 1415 次阅读 2017-8-25 16:26 |个人分类:决定性概率论|系统分类:论文交流

概率:决定性事件复杂程度最简单而又最根本的测度

美国归侨冯向军博士,2017年8月25日写于美丽家乡


(一)具有概率p的任何决定性事件E都是有一定复杂程度的广义系统

 任何决定性事件E,假如它具有概率p,那么它就已然成为具有一定复杂程度的一广义系统:

E = p*(1,0)+ (1-p)*(0,1)= pA + (1-p)非A    (1-1)

这其中,A=(1,0)而非A=(0,1)。A与非A是相互垂直的两个单位向量,代表两个相互对立的广义方向。决定性事件E则是以A与非A为基础所构成的二维正交坐标系上的广义向量。决定性事件E在以A为单位向量的坐标轴上的投影或坐标为p,而在以非A为单位向量的坐标轴上的投影或坐标为1-p。又因为p+(1-p)=1,所以广义向量E是归一化广义向量。在《关于决定性事件的概率论》中,归一化广义向量又叫做广义系统。所以任何决定性事件E,假如它具有概率p,那么它就已然成为具有一定复杂程度的一广义系统。

(二)举例说明

 假如张三为好人的概率p=70%=0.7,那么立即有:

张三 = 0.7*(1,0)+ 0.3*(0,1)= 0.7好人 + 0.3坏人

这其中好人=(1,0)而坏人=(0,1)。好人和坏人是代表两个相互对立的广义方向的单位向量。张三不是单纯的好人也不是单纯的坏人而是同时具有0.7个好人和0.3个坏人成份的具有一定复杂程度的广义系统。

(三)作为复杂度的概率p的基本特性

 当张三为好人的概率p=100%=1或p=0时,我们就知道张三很单纯,其复杂程度最小,要么是个纯好人要么是个纯坏人。当张三为好人的概率p=50%或p=0.5时,我们就知道张三相对而言最复杂:平等地既是半个好人又是半个坏人。

(四)从作为最简单复杂度的概率生出一切复杂度

 有了概率,才有概率分布。有了概率分布才有詹尼斯广义熵张学文复杂度、发生概率、Tsallis广义熵等一切可用来描述决定性事件的复杂程度的信息测度。所以:一切复杂度皆从作为最简单复杂度的概率出生。




http://blog.sciencenet.cn/blog-1968-1072713.html

上一篇:偶然性或不确定性的深层原因浅探
下一篇:经验两类分:共时性的全面经验和历时性的片面经验

0

该博文允许注册用户评论 请点击登录 评论 (1 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2020-8-12 20:41

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部