[2] E. Rich, User modeling via stereotypes, Cognitive Science 3 (1979) 329.
[3] D. Goldberg, D. Nichols, B. M. Oki, D. Terry, Using collaborative filtering to weave an information tapestry, Commun. ACM 35(12) (1992) 61.
[4] J. B. Schafer, D. Frankowski, J. Herlocker, S. Sen, Collaborative filtering recommender systems, LNCS 4321 (2007) 291.
[5] G. Adomavicius, A. Tuzhilin, Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions, IEEE Trans. Knowl. Data Eng. 17 (2005) 734.
[6] H. Wu, Y. Wang, X. Cheng, Incremental probabilistic latent semantic analysis for automatic question recommendation, Proc. 2008 ACM Conf. Recommender Systems, ACM Press, 2008, p. 99-106.
[7] L. AlSumait, D. Barbara, C. Domeniconi, On-line LDA: Adaptive Topic Models for Mining Text Streams with Applications to Topic Detection and Tracking, Proc. 2008 IEEE Intl. Conf. Data Mining, IEEE Computer Soecity, 2008, p. 3-12.
[8] P. Bonhard, M. A. Sasse, ‘Knowing me, knowing you’—Using profiles and social networking to improverecommendersystems, BT Tech. J. 24(3) (2006) 84.
[9] M. Medo, Y.-C. Zhang, T. Zhou, Adaptive model for recommendation of news, EPL 88 (2009) 38005.
[10] J. O’Donovan, B. Smyth, Trust in recommender systems, Proc. 10th Intl. Conf. Intelligent User Interface, ACM Press, 2005, p. 167-174.
[11] C.-N. Ziegler, S. M. McNee, J. A. Konstan, G. Lausen, Improving recommendation lists through topic diversification, Proc. 14th Intl. WWW Conf., ACM Press, 2005, p. 22-32.
[12] T. Zhou, Z. Kuscsik, J.-G. Liu, M. Medo, J. R. Wakeling, Y.-C. Zhang, Solving the apparent diversity-accuracy dilemma of recommender systems, Proc. Natl. Acad. Sci. U.S.A. 107 (2010) 4511.