Science Blog of Dr. Yuan分享 http://blog.sciencenet.cn/u/albumns This blog is mainly on Molecular molecular modelling and simulations

博文

The first GPCR-Gi complex structure resolved

已有 3333 次阅读 2018-6-15 01:02 |个人分类:好文转载|系统分类:科研笔记

 Cryo-EM structure of human rhodopsin bound to an inhibitory G protein

Nature (2018) 


Published:13 June 2018


Abstract

G-protein-coupled receptors comprise the largest family of mammalian transmembrane receptors. They mediate numerous cellular pathways by coupling with downstream signalling transducers, including the hetrotrimeric G proteins Gs (stimulatory) and Gi (inhibitory) and several arrestin proteins. The structural mechanisms that define how G-protein-coupled receptors selectively couple to a specific type of G protein or arrestin remain unknown. Here, using cryo-electron microscopy, we show that the major interactions between activated rhodopsin and Gi are mediated by the C-terminal helix of the Gi α-subunit, which is wedged into the cytoplasmic cavity of the transmembrane helix bundle and directly contacts the amino terminus of helix 8 of rhodopsin. Structural comparisons of inactive, Gi-bound and arrestin-bound forms of rhodopsin with inactive and Gs-bound forms of the β2-adrenergic receptor provide a foundation to understand the unique structural signatures that are associated with the recognition of Gs, Gi and arrestin by activated G-protein-coupled receptors.



The cryo-EM structure of the rhodopsin–G i complex.
a, b, Orthogonal views of the cryo-EM density map of the rhodopsin–G i
complex, coloured by subunits. c, d, Ribbon diagram representation of the
structure of the rhodopsin–G i complex.





https://blog.sciencenet.cn/blog-355217-1119040.html

上一篇:openSUSE Leap 15.0 released
下一篇:The first GPCR-Go complex structure resolved
收藏 IP: 85.216.103.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-28 07:36

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部