||
特征根为单实根的连续系统的能观丰富性计算
在博文“线性连续系统的能观丰富性”(http://blog.sciencenet.cn/blog-3343777-1067700.html)中,定义了能观丰富性并给出了其计算式如下
$v_{o,T}=\mathrm{Vol}(R_{o,T})=\left|W_{o,T}\right|^{-1}\mathrm{Vol}(\widetilde{R}_{o,T})$
当系统为SISO时,系统矩阵为 $A$ 为对角阵且特征值 $\lambda_{i}(i=1,2,\cdots,n)$ 都为单实根, $C=[c_{1},c_{2},\cdots,c_{n}]$ ,则有
$W_{o,T}=\left[\begin{array}{ccc}
c_{1}^{2}\frac{e^{2\lambda_{1}T}-1}{2\lambda_{1}} & \cdots & c_{1}c_{n}\frac{e^{(\lambda_{1}+\lambda_{n})T}-1}{\lambda_{1}+\lambda_{n}}\\
\vdots & \ddots & \vdots\\
c_{1}c_{n}\frac{e^{(\lambda_{1}+\lambda_{n})T}-1}{\lambda_{1}+\lambda_{n}} & \cdots & c_{n}^{2}\frac{e^{2\lambda_{n}T}-1}{2\lambda_{n}}
\end{array}\right]$
当 $\lambda_{i}\in(-\infty,0](i=1,2,\cdots,n)$ ,有
$\widehat{W}=\lim_{N\rightarrow\infty}W_{o,N}=-\left[\begin{array}{cccc} \frac{c_{1}^{2}}{2\lambda_{1}} & \frac{c_{1}c_{2}}{\lambda_{1}+\lambda_{2}} & \cdots & \frac{c_{1}c_{n}}{\lambda_{1}+\lambda_{n}}\\ \frac{c_{1}c_{2}}{\lambda_{1}+\lambda_{2}} & \frac{c_{2}^{2}}{2\lambda_{2}} & \cdots & \frac{c_{2}c_{n}}{\lambda_{2}+\lambda_{n}}\\ \vdots & \vdots & \ddots & \vdots\\ \frac{c_{1}c_{n}}{\lambda_{1}+\lambda_{n}} & \frac{c_{2}c_{n}}{\lambda_{2}+\lambda_{n}} & \cdots & \frac{c_{n}^{2}}{2\lambda_{n}} \end{array}\right]$
对 $\widehat{P}$ 的行列式值的值,可证明为
$\det\left(\widehat{W}\right)=G\left[\prod_{1\leq j_{1}
其中 $G$ 为关于特征值 $\lambda_{i}(i=1,2,\cdots,n)$ 的待定函数。此时
$\lim_{N\rightarrow\infty}v_{o,N}=\frac{1}{\det\left(\widehat{P}\right)}\left|\left(\prod_{1\leq j_{1} $=\frac{1}{G}\left|\left(\prod_{1\leq j_{1}
https://blog.sciencenet.cn/blog-3343777-1067817.html
上一篇:线性连续系统的能观丰富性
下一篇:几个特殊矩阵的行列式计算
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-23 07:46
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社