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Abstract. The dynamic frames approach has proven to be a powerful
formalism for specifying and verifying object-oriented programs. How-
ever, it requires writing and checking many frame annotations. In this pa-
per, we propose a variant of the dynamic frames approach that eliminates
the need to explicitly write and check frame annotations. Reminiscent of
separation logic’s frame rule, programmers write access assertions inside
pre- and postconditions instead of writing frame annotations. From the
precondition, one can then infer an upper bound on the set of locations
writable or readable by the corresponding method. We implemented our
approach in a tool, and used it to automatically verify several challenging
programs, including subject-observer, iterator and linked list.

1 Introduction

Last year’s distinguished paper at ECOOP, Regional Logic for Local Reasoning
about Global Invariants [1], proposed Hoare-style proof rules for reasoning about
dynamic frames in a Java-like language. In the dynamic frames approach
[1,2,3,4,5,6], the programmer specifies upper bounds on the locations that can be
read or written by a method in terms of expressions denoting sets of locations. To
preserve information hiding, these expressions can involve dynamic frames, pure
methods or ghost fields that denote sets of locations. A disadvantage of this ap-
proach is that frame annotations must be provided for each method, and that they
must be checked explicitly at verification time.

This paper improves upon regional logic and other dynamic frames-based ap-
proaches in two ways: (1) method contracts are more concise and (2) fewer proof
obligations must be discharged by the verifier. More specifically, we propose a
variant of the dynamic frames approach inspired by separation logic that elim-
inates the need to explicitly write and check frame annotations. Instead, frame
information is inferred from access assertions in pre- and postconditions. We have
proven the soundness of our approach, implemented it in a verifier prototype and
demonstrated its expressiveness by verifying several challenging examples from
related work.

The remainder of this paper is structured as follows. In Section 2, we show
how our approach solves the frame problem. Section 3 extends this solution with
support for data abstraction. In Section 4, we sketch the soundness argument
(for the complete proof, see [7]). Subclassing and inheritance are discussed in
Section 5 . Finally, we discuss our experience with the verifier prototype, compare
with related work, and conclude in Sections 6, 7 and 8.
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2 Framing

To reason modularly about a method invocation, one should not rely on the
callee’s implementation, but only on its specification. For example, consider the
code in Figure 1(b). To prove that the assertion at the end of the code snippet
holds in every execution, one should only take into account Cell ’s method con-
tracts. However, the given contracts are too weak to prove the assertion. Indeed,
setX ’s implementation is allowed to change the state arbitrarily, as long as it
ensures that this.x equals v on exit. In particular, the contract does not prevent
c2.setX (10) from modifying c1.x.

class Cell {
int x;

Cell()
ensures this.x = 0;

{ this.x := 0; }

void setX (int v)
ensures this.x = v;

{ this.x := v; }
}

(a)

Cell c1 := new Cell();
c1.setX (5); //A

Cell c2 := new Cell();
c2.setX (10);

assert c1.x = 5;
(b)

Fig. 1. A class Cell and some client code

To prove the assertion at the end of Figure 1(b), we must strengthen Cell ’s
method contracts. More specifically, the contracts should additionally specify an
upper bound on the set of memory locations modifiable by the corresponding
method. This problem is called the frame problem.

Various solutions to the frame problem have been proposed in the literature
(see Section 7 for a detailed comparison). The solution proposed in this paper is
as follows. A method may only access a memory location o.f if it has permission
to do so. More specifically, writing to or reading from a memory location o.f
requires o.f to be accessible. Accessibility of o.f is denoted acc(o.f). Method
implementations are not allowed to mention acc(o.f). In particular, they are not
permitted to branch over accessibility of a memory location. As a consequence,
a location o.f that was allocated before execution of a method m is only known
to be accessible during execution of m if m’s precondition requires accessibility
of o.f . In other words, a method’s precondition provides an upper bound on the
set of memory locations modifiable by the corresponding method: a method can
only modify an existing location o.f if that location is required to be accessible
by its precondition. As an example, consider the revised version of the class Cell
of Figure 2. setX can only modify this.x, since its precondition only requires
accessibility of this.x. Similarly, Cell ’s constructor does not require access to
any location, and can therefore only assign to fields of the new object.
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class Cell {
int x;

Cell()
ensures acc(this.x) ∧ this.x = 0;

{ this.x := 0; }

void setX (int v)
requires acc(this.x);
ensures acc(this.x) ∧ this.x = v;

{ this.x := v; }
}

Fig. 2. A revised version of the class Cell from Figure 1(a)

The accessibility of a memory location can change over time. For example,
when a new object is created, the fields of the new object become accessible.
How does a method invocation affect the set of accessible memory locations?
Since Java does not provide a mechanism for explicit deallocation and assertions
can only mention allocated locations, it would be safe to assume that the set
of accessible locations only grows across a method invocation. However, this
assumption would rule out interesting specification patterns, where a method
“captures” accessibility of a location. Furthermore, this assumption would break
in the presence of concurrency, where accessibility of memory locations is passed
on to other threads (cfr. [8,9]). Therefore, we use the following rule instead: a
memory location o.f that is known to be accessible before a method invocation
is still accessible after the invocation, if o.f was not required to be accessible by
the callee’s precondition. On the other hand, a location o.f that was required to
be accessible by the callee’s precondition is still accessible after the call only if
the callee’s postcondition ensures accessibility of o.f . In other words, acc(o.f)
in a precondition transfers permission to access o.f from the caller to the callee,
and vice versa acc(o.f) in a postcondition returns that permission to the caller.

Given the new method contracts for Cell of Figure 2 together with the rules for
framing outlined above, we can now prove the assertion at the end of Figure 1(b).
Informally, the reasoning is as follows. At program location A, the postcondition
of c1.setX (5) holds: c1.x is accessible and its value is 5. Since c2’s constructor
does not require access to any location, it can modify neither the accessibility
nor the value of any existing location. In particular, c1.x is still accessible and
still holds 5. Similarly, the call c2.setX(10) only requires c2.x to be accessible,
and hence c1.x is not affected. We may conclude that the assertion, c1.x = 5,
holds in any execution.

2.1 Formal Details

In the remainder of this section, we describe a small Java-like language with
contracts. Secondly, we define the notion of valid program. Informally, a program
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π is valid if each method successfully verifies, i.e. if the verification conditions of
π’s methods are valid.

Language. We describe the details of our verification approach with respect
to the small Java-like language of Figure 3. A program consists of a number
of classes and a main routine s. Each class declares a number of fields and
methods. For now, we consider only mutator methods. Each mutator method
has a corresponding method body, consisting of a sequence of statements. A
statement is either a field update, a variable declaration, a variable update, an
object construction, a mutator invocation or an assert statement. In addition,
a mutator method declares a method contract, consisting of two assertions: a
precondition and a postcondition. An assertion is either true, an access assertion,
a conjunction, a separating conjunction, an equality or a conditional assertion.
A separating conjunction holds only if both conjuncts hold and the left and
right-hand side demand access to disjoint parts of the heap. Both statements
and assertions contain expressions. An expression is either a variable, a field
read, or a constant (null or an integer constant).

program ::= class s

class ::= class C { field method }
field ::= t f ;
method ::= mutator
mutator ::= void m(t x) contract { s }
contract ::= requires φ; ensures φ;
t ::= int | C
s ::= e.f := e; | t x; | x := e; | x := new C; | e.m(e); | assert e = e;
φ ::= true | acc(e.f) | φ ∧ φ | φ ∗ φ | e = e | e = e ? φ : φ
e ::= x | e.f | c

Fig. 3. Syntax of a Java-like language with contracts

We assume the usual syntactic sugar. In particular, a constructor

C(t1 x1, . . . , tn xn) requires φ1; ensures φ2; { s }
is a shorthand for the mutator method

void initC(t1 x1, . . . , tn xn)
requires acc(f1) ∗ . . . ∗ acc(fn) ∗ φ1; ensures φ2;

{ s }
where f1, . . . , fn are the fields of C. Accordingly, a constructor invocation x :=
new C(e1, . . . , en); abbreviates x := new C; x.initC(e1, . . . , en);.

Verification. We check the correctness of a program by generating verification
conditions. The verification conditions are first-order formulas whose validity
implies the correctness of the program. In our implementation, we rely on an
SMT solver [10] to discharge the verification conditions automatically.
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Logic. We target a multi-sorted, first-order logic with equality. That is, a term
τ is either a variable or a function application. A formula ψ is either true,
false, a conjunction, a disjunction, an implication, a negation, an equality among
terms or a quantification. The formula ite(τ1 = τ2, ψ1, ψ2) is a shorthand for
(τ1 = τ2 ⇒ ψ1) ∧ (τ1 �= τ2 ⇒ ψ2). An application of a function g with arity 0 is
denoted g instead of g(). Functions with arity 0 are called constants.

Each term in the logic has a corresponding sort. The sorts are the following:
the sort of values, val , the sort of object references, ref , the sort of integers, int ,
the sort of heaps, heap, the sort of booleans, bool , the sort of sets of memory
locations, set , the sort of field names, fname, and finally the sort of class names,
cname. We omit sorts whenever they are clear from the context.

The signature of the logic consists of built-in functions and a number of
program-specific functions. The built-in functions include the following:

function sort
null ref

emptyset set
singleton ref × fname → set
intersect set × set → set
union set × set → set

contains ref × fname × set → bool
select heap × ref × fname → val
store heap × ref × fname × val → heap

allocated ref × heap → bool
allocate ref × heap → heap

ok heap × set → bool
succ heap × set × heap × set → bool

In addition to the built-in functions, the logic contains a number of program-
specific functions. In particular, the logic includes a constant C with sort cname
for each class C and a constant f with sort fname for each field f in the program
text. In Section 3, we will introduce additional program-specific functions.

Interpretation. We interpret the functions using the interpretation I. The inter-
pretation of the built-in functions is as expected. More specifically, null is inter-
preted as the constant null. The functions emptyset , singleton , union, intersect ,
and contains are interpreted as their mathematical counterpart. We abbreviate
applications of these functions by their mathematical notation. The function
select(h, o, f) corresponds to applying h to (o, f). Accordingly, store(h, o, f, v)
corresponds to an update of the function h at location (o, f) with v. We abbrevi-
ate select(h, o, f) as h(o, f) and store(h, o, f, v) as h[(o, f) �→ v]. ok(h, a) denotes
that the state with heap h and access set a is well-formed. Well-formedness im-
plies that both the access set a and the range of the heap h contain only allo-
cated objects. succ(h, a, h′, a′) states that the state with heap h′ and access set
a′ is a successor of the state with heap h and access set a. Successors of well-
formed states are well-formed. Furthermore, a successor state has more allocated
locations than its predecessor. We interpret the built-in constant f as the field
name f and the constant C as the class name C.
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Theory. We assume that the theory Σprelude (incompletely) axiomatizes the
built-in functions. That is, I is a model for Σprelude: I |= Σprelude. Σprelude

may for instance contain a subtheory which axiomatizes the set functions. For
example, in our verifier prototype the prelude includes an axiom that encodes
that the empty set contains no locations:

∀o, f • (o, f) �∈ emptyset

For now, we assume that Σπ, the theory for verifying mutator methods and the
main routine, equals Σprelude.

statements verification condition

e1.f := e2; s Df(e1) ∧ Df(e2) ∧ (Tr(e1), f) ∈ a ∧
vc(s, ψ)[h[(Tr(e1), f) �→ Tr(e2)]/h]

t x; s ∀x • vc(s, ψ)
x := e; s Df(e) ∧ vc(s, ψ)[Tr(e)/x]
x := new C; s ∀y • y �= null ∧ ¬allocated(y, h) ⇒

vc(s, ψ)[y/x, (a ∪ {(y, f1), . . . , (y, fn)})/a, allocate(y, h)/h]
where f1, . . . , fn are the fields of C

e0.m(e1, . . . , en); s Df(e0) ∧ . . . ∧ Df(en) ∧ Tr(e0) �= null ∧ Tr(P )∧
(∀h′, a′•

succ(h, a, h′, a′)∧
Tr(Q)[h′/h, a′/a]∧
(∀o, f • (o, f) ∈ a \ R(P ) ⇒ (o, f) ∈ a′ ∧ h(o, f) = h′(o, f)) ∧
(∀o, f • (o, f) ∈ R(Q)[h′/h, a′/a] \ R(P ) ⇒ (o, f) �∈ a)
⇒
vc(s, ψ)[h′/h, a′/a])

where C is the type of e0,
x1, . . . , xn are the parameters of C.m,
P is mpre(C,m)[e0/this, e1/x1, . . . , en/xn] and
Q is mpost(C,m)[e0/this, e1/x1, . . . , en/xn]

assert e1 = e2; s Df(e1 = e2) ∧ Tr(e1 = e2) ∧ vc(s, ψ)
nil ψ

Fig. 4. Verification conditions (vc) of statements with respect to postcondition ψ

Verification Conditions. We check the correctness of a program by generating
verification conditions. The verification conditions for each statement are shown
in Figure 4. The free variables of vc(s, ψ) are h, a, and the free variables of
ψ and s. The variable h denotes the heap, while the variable a denotes the
set of accessible locations. Tr and Df denote the translation and respectively
the definedness of expressions and assertions (shown in Figure 5). mpre(C,m)
and mpost(C,m) respectively denote the pre- and postcondition of the method
C.m.

The first core ingredient of our approach is that a method can only access a
memory location if it has permission to do so. To enforce this restriction, the
verification condition for field update checks that the assignee is in the access
set a. Similarly, a field read o.f is only well-defined if o.f is an element of a.
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expression Tr Df

x x true
e.f h(Tr(e), f) Df(e) ∧ (Tr(e), f) ∈ a
c c true

true true true
acc(e.f) (Tr(e), f) ∈ a Df(e) ∧ Tr(e) �= null
φ1 ∧ φ2 Tr(φ1) ∧ Tr(φ2) Df(φ1) ∧ (Tr(φ1) ⇒ Df(φ2))
φ1 ∗ φ2 Tr(φ1 ∧ φ2) ∧ (R(φ1) ∩ R(φ2) = ∅) Df(φ1 ∧ φ2)
e1 = e2 Tr(e1) = Tr(e2) Df(e1) ∧ Df(e2)

e1 = e2 ? φ1 : φ2 ite(Tr(e1 = e2),Tr(φ1),Tr(φ2)) ite(Tr(e1 = e2),Df(φ1),Df(φ2))

Fig. 5. Translation (Tr) and definedness (Df) of expressions and assertions

assertion R
true ∅

acc(e.f) {(Tr(e), f)}
φ1 ∧ φ2 R(φ1) ∪ R(φ2)
φ1 ∗ φ2 R(φ1 ∧ φ2)
e1 = e2 ∅

e1 = e2 ? φ1 : φ2 ite(Tr(e1 = e2),R(φ1),R(φ2))

Fig. 6. Required access set (R) of assertions

The second core ingredient of our approach is that we deduce frame infor-
mation from a callee’s precondition. More specifically, a callee can only read
or modify an existing location o.f if its precondition demands access to o.f . A
naive, literal encoding of this property does not lead to good performance with
automatic theorem provers. In particular, the combination of the literal encoding
and our approach for data abstraction of Section 3 yields verification conditions
that are too hard for those provers. Therefore, we propose a slightly different
encoding. More specifically, we syntactically infer from the callee’s precondition
a required access set, i.e. a term denoting the set of memory locations required
to be accessible by the precondition. The definition of required access set (R) of
an assertion is shown in Figure 6. The subformula

∀o, f • (o, f) ∈ a \ R(P ) ⇒ (o, f) ∈ a′ ∧ h(o, f) = h′(o, f)

in the verification condition of method invocation encodes the property that all
locations o.f that are accessible to the callee and that were not in the required
access set of the precondition remain accessible and retain their value. Note that
this is a free postcondition: callers can assume the postcondition holds, but it is
not necessary to explicitly prove the postcondition when verifying the method’s
implementation (see Definition 1). In addition to the “free modifies” clause,
callers may assume a second free postcondition, the swinging pivot property:

∀o, f • (o, f) ∈ R(Q)[h′/h, a′/a] \ R(P ) ⇒ (o, f) �∈ a

The swinging pivot property states that all locations required to be accessible by
the postcondition are either required to be accessible by the precondition or are
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not accessible to the callee. In Section 3, this property will be crucial to ensure
disjointness.

A program is valid (Definition 3) if it successfully verifies. More specifically,
a valid program only contains valid methods and has a valid main routine. A
mutator is valid (Definition 1) if both its pre- and postcondition are well-defined
assertions and if its body satisfies the method contract. A method body s satis-
fies the contract if the postcondition holds after executing s, whenever execution
starts in a state satisfying the precondition. The main routine is valid (Defini-
tion 2) if it satisfies the contract requires true; ensures true;. Executions of
valid programs never deference null and assert statements never fail. We outline
a proof of this property in Section 4.

Definition 1. A mutator method

void m(t1 x1, . . . , tk xk) requires φ1; ensures φ2; { s }
is valid if all of the following hold:

– The precondition is well-defined and the postcondition is well-defined, pro-
vided the precondition holds.

Σπ 	 ∀h, a, h′, a′, this , x1, . . . , xk • ok(h, a) ∧ succ(h, a, h′, a′) ∧ this �= null∧
⇓

Df(φ1) ∧ (Tr(φ1) ⇒ Df(φ2)[h′/h, a′/a])

– The method body satisfies the method contract.

Σπ 	 ∀h, a, this , x1, . . . , xk • ok (h, a) ∧ this �= null ∧ Tr(φ1) ⇒ vc(s,Tr(φ2))

Definition 2. The main routine s is valid if the following holds:

Σπ 	 ∀h, a • ok(h, a) ⇒ vc(s, true).

Definition 3. A program π is valid (denoted valid(π)) if all mutator methods
and the main routine are valid.

3 Data Abstraction

Data abstraction is crucial in the construction of modular programs, since it
ensures that internal changes in one module do not propagate to other modules.
However, the class Cell of Figure 2 and its specifications were not written with
data abstraction in mind. More specifically, (1) client code must directly access
the field x to query a Cell object’s internal state and (2) Cell ’s method contracts
are not implementation-independent as they mention the internal field x. Any
change to Cell ’s implementation, such as renaming x to y, would break or at
least oblige us to reconsider the correctness of client code.

Developers typically solve issue (1) by adding “getters” to their classes. For
example, the class Cell of Figure 7(a) defines a method getX to query a Cell ’s in-
ternal state. The method is marked pure to indicate it does not have side-effects.
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class Cell {
int x;

Cell()
ensures valid() ∧ getX () = 0;

{ this.x := 0; }

void setX (int v)
requires valid();
ensures valid() ∧ getX () = v;

{ this.x := v; }

predicate bool valid()
{ return acc(this.x); }

pure int getX ()
requires valid();

{ return this.x; }

void swap(Cell c)
requires valid() ∗ c �= null ∧ c.valid();
ensures valid() ∗ c.valid();
ensures getX () = old(c.getX ());
ensures c.getX () = old(getX ());

{ int i := x; x := c.getX(); c.setX (i); }
}

(a)

Cell c1 := new Cell();
c1.setX (5); //A

Cell c2 := new Cell();
c2.setX (10);

assert c1.getX () = 5;
(b)

Fig. 7. A revised version of class Cell with data abstraction

As shown in Figure 7(b), the assertion of Figure 1(b) can now be rephrased in
terms of getX .

To complete the decoupling between Cell ’s implementation and client code,
we should also solve issue (2) and make Cell ’s method contracts implementation-
independent. In this paper, we solve the latter issue by allowing getters to be used
inside specifications. That is, we allow the effect of one method to be specified
in terms of other methods. For example, the behavior of setX in Figure 7(a) is
described in terms of its effect on getX .

In this paper, methods used within contracts are called pure methods. We
distinguish two kinds of pure methods: normal pure methods (annotated with
pure) and predicates (annotated with predicate). A pure method’s body con-
sists of a single return statement, returning either an expression (in case of a
normal pure method) or an assertion (in case of a predicate). That is, a normal
pure method abstracts over an expression, while a predicate abstracts an asser-
tion. Since assertions and expressions are side-effect free, execution of a pure
method never modifies the state. Since we disallow mentioning assertions inside
method bodies, predicates can only be called from contracts and from the bodies
of predicates. Furthermore, predicates are not allowed to have preconditions. In



Implicit Dynamic Frames: Combining Dynamic Frames and Separation Logic 157

our running example, both getX and valid are pure methods. The former is a
normal pure method, while the latter is a predicate. Predicates are typically used
to represent invariants and to abstract over accessibility of memory locations.

To prove the assertion at the end of Figure 7(b), one must show that c2’s
constructor and c2.setX (10) do not affect the return value of c1.getX (). In other
words, it suffices to show that the locations modified by those statements is
disjoint from the set of locations that c1.getX () depends on. But how can we
determine which locations influence the return value of getX ? The answer is
simple.

We can deduce from the precondition of a normal pure method an upper
bound on the set of locations readable by that method: a pure method p can
only read o.f if p’s precondition requires o.f to be accessible. In other words, the
return value of a normal pure method only depends on locations required to be
accessible by its precondition. A predicate does not have a precondition, so what
locations does its return value depend on? We say a predicate is self-framing.
That is, the return value of a predicate q only depends on locations that q itself
requires to be accessible.

Given these properties of pure methods, we can now prove the assertion at the
end of Figure 7(b). Informally, the reasoning is as follows. At program location
A, the postcondition of c1.setX (5) holds: c1.valid () is true and c1.getX () returns
5. Because c2’s constructor does not require access to any existing location, it
can only modify fresh locations (i.e. c2’s fields and fields of objects allocated
within the constructor itself). Since c1.valid () only requires access to non-fresh
locations, both its own return value and the return value of c1.getX () are not
affected by c2’s constructor. In addition, the set of memory locations required
to be accessible by c1.valid () is disjoint from the set of locations required to be
accessible by c2.valid (), since the latter set only contains fresh locations (follows
from the swinging pivot property). c2.setX () can only modify locations covered
by c2.valid(). The latter set of locations is disjoint from c1.valid (), hence the
return values of c1.valid() and c1.getX () are not affected by c2.setX (10). We
may conclude that the assertion, c1.getX () = 5, holds in any execution.

To illustrate the use of the separating conjunction, consider the method swap
of Figure 7(a). swap’s precondition requires that the receiver and c are “sep-
arately” valid, i.e. that both this.valid() and c.valid () hold and that the set
of locations required to be accessible by this.valid() is disjoint from the set of
locations required to be accessible by c.valid(). If we would have used a nor-
mal conjunction instead of a separating conjunction, we would not be able to
prove c.valid () holds after the assignment to x. In particular, the separating
conjunction ensures that c.valid() does not depend on this.x.

3.1 Formal Details

Language. We extend the language of Figure 3 with normal pure methods
(typically denoted as p) and predicates (typically denoted as q) as shown in
Figure 8. Accordingly, we add predicate invocations to the assertion language
and normal pure method invocations to the expression language.
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method ::= . . . | predicate | pure
predicate ::= predicate bool q(t x) { return φ; }
pure ::= pure t p(t x) contract { return e; }
φ ::= . . . | e.q(e)
e ::= . . . | e.p(e)

Fig. 8. An extension of the language of Figure 3 with pure methods

To ensure consistency of the encoding of pure methods, we enforce that pure
methods terminate by syntactically checking that a pure method p only calls
pure methods defined before p in the program text. We discuss this restriction
together with more liberal solutions for ensuring consistency in Section 4.

Verification

Logic. A standard technique in verification is to represent pure methods as
functions in the verification logic [11,12]. More specifically, for a normal pure
method C.p with parameters t1 x1, . . . , tn xn and return type t, the verification
logic includes a function C.p with sort heap×set×ref ×sort(t1)× . . .×sort(tn) →
sort(t), where sort maps a type to its corresponding sort. Similarly, for each
predicate C.q with parameters t1 x1, . . . , tn xn, the logic includes a function C.q
with sort heap × set × ref × sort(t1)× . . .× sort(tn) → bool and a function C.qFP

with sort heap × set × ref × sort(t1) × . . .× sort(tn) → set . The latter function,
C.qFP, is called q’s footprint function.

An invocation of a pure method is encoded in the verification logic as an
application of the corresponding function. For example, the postcondition of
setX of Figure 7(a) is encoded as Cell .valid(h, a, this)∧Cell .getX (h, a, this) = v.

Interpretation. We extend I to these new program-specific functions as follows.
For each normal pure method C.p and for all heaps H , access sets A and val-
ues v0, . . . , vn, I(C.p)(H,A, v0, . . . , vn) equals v, if evaluation of v0.p(v1, . . . , vn)
terminates and yields value v. Otherwise, I(C.p)(H,A, v0, . . . , vn) equals the de-
fault value of the method’s return type. The interpretation of predicates and
footprint functions is similar (see [7]).

Theory. The behavior of a pure method is encoded via several axioms. Each
normal pure method p has a corresponding axiomatization Σp, consisting of an
implementation and a frame axiom. More specifically, the axioms corresponding
to the normal pure method

pure t p(t1 x1, . . . , tk xk) requires φ1; ensures φ2; { return e; }

are the following:

– Implementation axiom. The implementation axiom relates the function
symbol C.p to the pure method’s implementation: applying the function
equals evaluating the method body, provided the precondition holds.



Implicit Dynamic Frames: Combining Dynamic Frames and Separation Logic 159

∀h, a, this, x1, . . . , xk • ok (h, a) ∧ this �= null ∧ Tr(φ1)
⇓

C.p(h, a, this , x1, . . . , xk) = Tr(e)

– Frame axiom. The frame axiom encodes the property that a pure method
only depends on locations in the required access set of its precondition. That
is, the return value of p is the same in two states, if locations in the required
access set of the precondition have the same value in both heaps.

∀h1, a1, h2, a2, this , x1, . . . , xk•
ok(h1, a1) ∧ ok (h2, a2) ∧ this �= null∧

Tr(φ1)[h1/h, a1/a] ∧ Tr(φ1)[h2/h, a2/a]∧
(∀o, f • (o, f) ∈ R(φ1)[h1/h, a1/a] ⇒ (o, f) ∈ a2 ∧ h1(o, f) = h2(o, f))

⇓
C.p(h1, a1, this , x1, . . . , xk) = C.p(h2, a2, this , x1, . . . , xk)

Each predicate q has a corresponding axiomatization Σq, consisting of an
implementation axiom, frame axiom, footprint implementation axiom, footprint
frame axiom and a footprint allocated axiom. More specifically, the axioms cor-
responding to the predicate

predicate bool q(t1 x1, . . . , tk xk) { return φ; }
are the following:

– Implementation axiom. The implementation axiom relates q’s function
symbol to its implementation.

∀h, a, this , x1, . . . , xk • ok(h, a) ∧ this �= null
⇓

C.q(h, a, this , x1, . . . , xk) = Tr(φ)

– Frame axiom. The frame axiom encodes the property that a predicate is
self-framing.

∀h1, a1, h2, a2, this , x1, . . . , xk•
ok(h1, a1) ∧ ok (h2, a2) ∧ this �= null∧

C.q(h1, a1, this , x1, . . . , xk)∧
(∀o, f •(o, f)∈C.qFP(h1, a1, this , x1, . . . , xk)⇒(o, f)∈a2∧h1(o, f)=h2(o, f))

⇓
C.q(h2, a2, this , x1, . . . , xk)

– Footprint implementation axiom. The footprint implementation axiom
relates the function symbol C.qFP to the required access set of the body of
the predicate.

∀h, a, this , x1, . . . , xk • ok (h, a) ∧ this �= null ∧ C.q(h, a, this , x1, . . . , xk)
⇓

C.qFP(h, a, this , x1, . . . , xk) = R(φ)
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– Footprint frame axiom. The footprint frame axiom encodes the property
that a footprint function frames itself, provided the corresponding predicate
holds.

∀h1, a1, h2, a2, this , x1, . . . , xk•
ok(h1, a1) ∧ ok (h2, a2) ∧ this �= null∧

C.q(h1, a1, this , x1, . . . , xk) ∧ C.q(h2, a2, this , x1, . . . , xk)∧
(∀o, f •(o, f)∈C.qFP(h1, a1, this , x1, . . . , xk)⇒(o, f)∈a2∧h1(o, f)=h2(o, f))

⇓
C.qFP(h1, a1, this , x1, . . . , xk) = C.qFP(h2, a2, this , x1, . . . , xk)

– Footprint accessible axiom. The footprint accessible axiom states that a
predicate footprint only contains accessible locations, provided the predicate
itself holds.

∀h, a, this , x1, . . . , xk•
ok(h, a) ∧ this �= null ∧C.q(h, a, this , x1, . . . , xk)

⇓
C.qFP(h, a, this , x1, . . . , xk) ⊆ a

We redefine Σπ as Σprelude ∪
⋃

p∈π Σp. That is, Σπ is the union of the axioms
for the built-in functions and the axioms of each pure method in π. Moreover,
we define Σp∗ as the axiomatization of all pure methods defined before p in the
program text. Note that Σp∗ does not include Σp.

Verification Conditions. To support data abstraction, we added pure methods
and pure method invocation to our language. Figure 9 extends the table of
Figure 5 with invocations of pure methods. In particular, pure methods are
encoded as functions in the verification logic. An invocation of a pure method
is well-defined if the arguments are well-defined and the receiver is not null. In
addition, the precondition must hold for a normal pure method invocation to be
well-defined.

expression Tr Df

e0.p(e1, . . . , en) C.p(h, a,Tr(e0), . . . ,Tr(en)) Df(e0) ∧ . . . ∧ Df(en) ∧ Tr(e0) �= null∧
Tr(mpre(C, p)[e0/this, e1/x1, . . . , en/xn])

e0.q(e1, . . . , en) C.q(h, a,Tr(e0), . . . ,Tr(en)) Df(e0) ∧ . . . ∧ Df(en) ∧ Tr(e0) �= null

Fig. 9. Translation (Tr) and definedness (Df) of pure method invocations

In this section, we added a new kind of assertion, namely predicate method
invocation. What is the required access set of such an assertion? One solution
would be to define the required access set of a predicate invocation as the re-
quired access set of the predicate’s body. However, such a definition would expose
implementation details to client code. For example, the required access set of the
precondition of getX of Figure 7(a) would be the singleton {(this , x)}. Yet, this
is just a detail of the current implementation, and client code should not rely on
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assertion R
e0.q(e1, . . . , en) C.qFP(h, a,Tr(e0), . . . ,Tr(en))

Fig. 10. Required access set (R) of predicate instances

it. Instead, we propose introducing an extra layer of indirection. More specifi-
cally, as shown in Figure 10 the required access set of a predicate invocation is
an application of the footprint function.

We redefine the notion of valid program. More specifically, for a program to be
valid, we now additionally require that all pure methods are valid (Definition 6).
Informally, a pure method is valid if its body and contract are well-defined
(Definitions 4 and 5). Note that a pure method p is not verified with respect to
the theory Σπ but with respect to Σprelude ∪ Σp∗. That is, during verification
of a pure method, one can only assume that the prelude axioms and axioms of
pure methods defined before p in the program text hold.

Definition 4. A predicate

predicate bool q(t1 x1, . . . , tk xk) { return φ; }
is valid if its body is a well-defined assertion:

Σprelude ∪Σq∗ 	 ∀h, a, this , x1, . . . , xk • ok (h, a) ∧ this �= null ⇒ Df(φ)

Definition 5. A pure method

pure t p(t1 x1, . . . , tk xk) requires φ1; { return e; }
is valid if its precondition is well-defined and its body is well-defined, provided
the precondition holds:

Σprelude ∪Σp∗ 	 ∀h, a, this , x1, . . . , xk•
ok(h, a) ∧ this �= null ⇒ Df(φ1) ∧ (Tr(φ1) ⇒ Df(e))

Definition 6. A program π is valid (denoted valid(π)) if all methods (both pure
and mutator) and the main routine are valid.

4 Soundness

The structure of the soundness proof is as follows. We define a run-time checking
execution semantics for the language of Figure 8. Execution gets stuck at null
dereferences and assertion violations. We then define the notion of valid config-
uration. We show that valid programs do not get stuck by proving progress and
preservation for valid configurations in valid programs. In the remainder of this
section, we elaborate all the steps described above. For the full proof, we refer
the reader to a technical report [7].

We start by defining an execution semantics for programs written in the lan-
guage of Figure 8. More specifically, a configuration (H,S) consists of a heap
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H and a stack S. The former component is a partial function from object refer-
ences to objects states. An object state is a partial function from field names to
values. The stack consists of a list of activation records. Each activation record
(Γ,A,G,B, s) is a 5-tuple consisting of an environment Γ that maps variables
to values, a set of accessible locations, an old heap G, an old access set B, and
finally a sequence of statements. The old heap holds the value of the heap at
the time the activation record was put onto the call stack, while the old access
stores a copy of the callee’s access set. A configuration can perform a step and
get to a successor configuration as defined by the small-step relation →. As an
example, consider the definition of → for field update.

H,Γ,A 	 e1 ⇓ v1
H,Γ,A 	 e2 ⇓ v2 (v1, f) ∈ A H ′ = H [(v1, f) �→ v2]

(H, (Γ,A,G,B, e1.f := e2; s) · S) → (H ′, (Γ,A,G,B, s) · S)

In this definition, H,Γ,A 	 e1 ⇓ v1 denotes that the expression e1 evaluates
to value v1. H [(v1, f) �→ v2] denotes the update of the function H at location
(v1, f) with value v2. Note that → defines a run-time checking semantics. For
example, a field update is stuck if the location being assigned to is not in the
activation record’s access set. In general, → gets stuck at a null deference, pre-
condition violation, postcondition violation, when a non-accessible location is
read or written or when the condition of an assert statement evaluates to false.

→ preserves certain well-formedness properties. In particular, it preserves the
fact that (1) access sets of different activation records are disjoint and (2) that the
access set of each activation record (except for the top of the stack) frames part
of the heap with respect to the old heap. More specifically, for each activation
record (Γi, Ai, Gi, Bi, si), property (2) states that for all locations o.f in Ai, the
value of o.f in the current heap H equals the value of o.f in Gi−1. In other
words, each location that is accessible to the callee but that is not required to
be accessible by the caller cannot be changed during the callee’s execution.

A configuration σ is valid if each activation record is valid. The top activation
record (Γ1, A1, G1, B1, s1) is valid if I, H, Γ1, A |= vc(s1, ψ1), where ψ1 is the
postcondition of the method being executed. That is, the verification condition of
the remaining statements satisfies the postcondition, when interpreting functions
as defined in I, h as the heap H , a as the access set A and all variables by their
value in Γ . Similarly, any other activation record (Γi, Ai, Gi, Bi, si) is valid if
I, Gi−1, Γi, Bi−1 |= vc(s, ψi).

Finally, we prove that for valid programs (i.e. for programs that successfully
verify according to Definition 6) → preserves validity of configurations and that
valid configurations are never stuck. In particular, we prove preservation for
the return step by relying on the well-formedness properties described above.
It follows that executions of valid programs do not violate assertions and never
dereference null. Moreover, it is safe to erase the ghost state (e.g. access set per
activation record) and the corresponding checks (e.g. that any location being
assigned to is in the activation record’s access set is accessible) in executions of
valid programs.
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Consistency. For verification to be sound, the theory Σπ must be consistent.
To show consistency, it suffices to prove that I |= Σπ if π is a valid program.
Since I |= Σprelude, it is sufficient to demonstrate that I is a model for the ax-
iomatization of each pure method. We prove the latter property by constructing
a set of pure methods S, such that if a pure method p is in S, then all pure
methods defined before p in the program text are also in S. We define ΣS as
the union of the axioms of all pure methods in S. We proceed by induction on
the size of S. If S is empty, then trivially I |= ΣS . If S is not empty, select the
pure method p from S that appears last in the program text. It follows from the
induction hypothesis that I |= Σp∗. We have to show that I is a model for each
of p’s axiom. The fact that I models the implementation axiom follows from the
fact that pure methods must terminate (i.e. a pure method can only call pure
methods defined earlier in the program text) and the definition of I for normal
pure methods. The complete proof for all the axioms can be found in [7].

The main goal of our soundness proof is to show that the rules for framing
are sound. We consider ensuring consistency of the logic in the presence of pure
methods as an orthogonal issue. For that reason, we choose to ensure consistency
in the proof by a very simple, but restrictive rule: a pure method p can only
call pure methods defined before p in the program text. However, more flexible
solutions exist [11,13]. For example in our verifier prototype, we allow cycles
in the call graph, provided the size of the precondition’s required access set
decreases along the call chain. Furthermore, a predicate may call any other
predicate, provided the call occurs in a positive position.

5 Inheritance

Inheritance is a key component of the object-oriented programming paradigm
that allows a class to be defined in terms of one or more existing classes. For
example, the class BackupCell of Figure 11 extends its superclass Cell with a
method undo. Dealing with inheritance in verification is challenging. In partic-
ular, for verification to be modular, the addition of a new subclass should not
break or oblige us to reconsider the correctness of existing code. In this section,
we informally describe how our approach can be extended to cope with Java-like
inheritance in a modular way. Our approach for dealing with inheritance is based
on earlier proposals by Leavens et al. [14], Parkinson et al. [15] and Jacobs et
al. [12].

Methods can both be statically and dynamically bound, depending on the
method and the calling context. For example, getX is dynamically bound in
the client code of Figure 7(b), while it is statically bound in the body of setX
in Figure 11. To distinguish statically bound invocations of pure methods from
dynamically bound ones, we introduce additional function symbols in the verifi-
cation logic. That is, for a pure method p defined in a class C with parameters
x1, . . . , xn, the logic not only includes a function symbol C.p but also a function
C.pD. The former function symbol is used for statically bound calls, while the
latter is used for dynamically bound calls.
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class BackupCell extends Cell {
int backup;

BackupCell()
ensures valid() ∧ getX () = 0;

{ super(); }

void setX (int v)
requires valid();
ensures valid();
ensures getX () = v ∧ getBackup() = old(getX ());

{ backup := super.getX (); super.setX (v); }

void undo()
requires valid();
ensures valid() ∧ getX () = old(getBackup());

{ super.setX (backup); }

predicate bool valid()
{ return acc(backup) ∗ super.valid(); }

pure int getBackup()
requires valid();

{ return backup; }
}

Fig. 11. A class BackupCell (similar to Recell from [15]) which extends Cell with undo

The relationship between C.p and C.pD is encoded via a number of axioms.
More specifically, C.p equals C.pD whenever the dynamic type of the receiver
(denoted as typeof (this)) equals C.

∀h, a, this, x1, . . . xn • ok(h, a) ∧ typeof (this) = C ⇒
C.p(h, a, this , x1, . . . , xn) = C.pD(h, a, this , x1, . . . , xn)

Furthermore, whenever a method D.p overrides C.p, we include the following
axiom:

∀h, a, this , x1, . . . xn • ok (h, a) ∧ typeof (this) <: D ⇒
C.pD(h, a, this , x1, . . . , xn) = D.pD(h, a, this , x1, . . . , xn)

That is, if the dynamic type of the receiver is a subtype (denoted as <:) of D,
then dynamically bound invocations of both C.p and D.p yield the same result.
For the footprint function of a predicate, we use a similar encoding.

Calls with receiver this are treated differently in code and in contracts. If a
method invocation is statically bound, then invocations of pure methods with
receiver this in the callee’s contract are also considered to be statically bound;
otherwise, such invocations are considered to be dynamically bound. Meth-
ods themselves are verified under the assumption they are called statically, i.e.
calls with receiver this in the contract are statically bound. Doing so is sound,
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provided each subclass overrides each method. Indeed, if a method is called stat-
ically, then the caller and callee agree on the method contract. If a method is
called dynamically, then the dynamic type of the receiver equals the static type,
and therefore it follows that the static contract equals the dynamic contract.

To ensure the implementation of a subclass D does not break the contracts of
a superclass C, we check that the contract of each method in C is satisfied by a
method body that satisfies the contract of D. More specifically, for each method
m in C, we check that a method body that callsD.m satisfies the contract ofC.m,
assuming that the dynamic type of the receiver is D. The latter proof obligation
ensures that no existing code is broken by the addition of the subclass C.

Note that BackupCell is just another client of Cell that is oblivious to Cell ’s
implementation. If we were to change Cell ’s implementation (within the bound-
aries set by its method contracts), then the correctness of BackupCell would not
be endangered.

6 Experience

To demonstrate the approach described in this paper is amenable to automatic,
static verification, we implemented it in a verifier prototype. The prototype was
used to verify several (variations of) programs used in related work.

The time taken to verify each program and a reference to the paper(s) contain-
ing the program is shown in Table 1. The experiments were executed on a desktop
machine with a Pentium Core Duo 2.66 GHz processor and 4 GB of memory
running Windows Vista. To discharge the verification conditions, we used the
Z3 [10] theorem prover. The verifier itself and the programs shown in Table 1
can be downloaded from http://www.cs.kuleuven.be/~jans/vericool2.

Table 1. Table showing the time taken (in seconds) to verify each program

program time taken source

Cell 0.1 [16,17,12]
ArrayList and Iterator 0.8 [2,18]

LinkedList 43 [19,2]
Resource Pool 2.1 [17]

Marriage 0.2 [20]
MasterClock 0.2 [21]

Subject-Observer 11 [1,22]
Recell, TCell, DCell 0.5 [15]

Visitor (framing only) 127 [17]

To ensure a method’s correctness proof does not depend on internal details
of other modules, our verifier prototype makes a pure method’s implementation
axioms available only to other methods implemented in the same module.

Iterated Star. In many programs, it is useful to specify that an assertion
holds for a statically unknown number of objects. For example in the Subject-
Observer pattern, the invariant of the subject typically states that all registered

http://www.cs.kuleuven.be/~jans/vericool2
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observers are valid. In our tool, there are two ways two write such invariants.
First of all, one can define the invariant in terms of a recursive predicate. How-
ever, reasoning about recursive predicates in first-order provers is tricky, since
this often involves proving inductive lemmas. To avoid reasoning about recur-
sive predicates, our tool provides another way of quantifying over an unknown
number of objects, namely iterated star. An iterated star assertion has the form
(∀∗x ∈ (min : max )•φ), where min and max are integer expressions. Informally,
the latter assertion states that φ holds for all integers between min (inclusive)
and max (exclusive) and that for any two different integers in that range, the
locations required to be accessible by φ are disjoint. For example, the invari-
ant of the subject can be written as follows. Note that obs is a field of type
List < Observer >.

predicate bool subobs() {
return acc(value) ∗ acc(obs) ∗ obs �= null ∧ obs .valid()∗
(∀∗i ∈ (0 : obs .size())•

obs .get(i) �= null ∧ obs .get(i).valid()∧
obs .get(i).getSubject() = this ∧ obs .get(i).upToDate()); }

We translate iterated star as follows (i and j are fresh variables).

(∀x • Tr(min) ≤ x < Tr(max ) ⇒ Tr(φ))∧
(∀i, j • Tr(min) ≤ i < Tr(max ) ∧ Tr(min) ≤ j < Tr(max ) ∧ i �= j ⇒

R(φ[i/x]) ∩ R(φ[j/x]) = ∅)
The first quantification states that φ holds for all integers between min and max ,
while the second one states that the required access set is disjoint at different
indices. An iterated star is well-defined only if the bounds are well-defined and
the assertion is well-defined for all integers within those bounds. That is, the
definedness of an iterated star is as follows.

Df(min) ∧ Df(max ) ∧ (∀x • Tr(min) ≤ x < Tr(max ) ⇒ Df(φ))

What is the required access set of an iterated star? Informally, the required
access is the union of the required access sets of φ for all indices in the range:⋃

Tr(min)≤x<Tr(max) R(φ). However,
⋃

is not a first-order concept. Therefore, we
encode the required access set of an iterated star as follows (inspired by [23]). For
each iterated star in the program text, we generate a function in the verification
logic unioni (where i is unique for each iterated star) with sort heap×set× int×
int → set . This function represents the required access set of the corresponding
iterated star. Several axioms describe the behavior of union i. For example, we
add an axiom that states a set is disjoint from a union only if it is disjoint from
all the elements.

∀h, a,min,max , s • s ∩ unioni(h, a,min,max ) = ∅ ⇔
(∀x • Tr(min) ≤ x < Tr(max ) ⇒ s ∩ R(φ) = ∅)

Whenever two different iterated stars are sufficiently similar, we generate only
one union function instead of two. Two iterated stars are sufficiently similar if
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they differ only in the name of the quantified variable or in their range. Such
similar iterated stars typically occur in loop invariants and postconditions.

Partial Permissions

In this paper, we do not distinguish full access permissions (permission to read
and write a location) from partial access permissions (permission to read). That
is, a method either has permission to both read and write a location or it cannot
access the location at all. Therefore, even if a mutator only reads an existing
location, it still has to demand full access to that location in its precondition.
This problem can be solved in many ways. For instance, Boyland [24] proposes
using fractional permissions. We could extend our solution with support for
fractions by tracking an access map, which maps each location to a fraction,
instead of an access set.

In our implementation, we use a different solution. A mutator should indicate
it only reads a location o.f by ensuring in its postcondition that o.f ’s value is

class ArrayList {
int n; Object [] items;

ArrayList()
ensures valid() ∧ size() = 0;

void add(Object o)
requires valid();
ensures valid();
ensures size() = old(size() + 1);
ensures (∀∗i ∈ (0 : size() − 1)•
get(i) = old(get(i)));

ensures get(size() − 1) = o;

predicate bool valid()
{ return acc(n) ∗ acc(items)∗

items �= null ∗ accElems(items)∗
0 ≤ n ≤ items.length ; }

pure int size()
requires valid();

{ return n; }

pure Object get(int index )
requires valid();
requires 0 ≤ index < size();

{ return items [index ]; }
}

class Iterator {
ArrayList list ; int index ;

Iterator (List l)
requires l �= null ∧ l.valid();
ensures valid() ∧ getList() = l;
ensures untouched(getList().valid());

Object next()
requires valid() ∧ hasNext();
ensures valid();
ensures getList() = old(getList());
ensures untouched(getList().valid());

predicate bool valid()
{ return acc(list) ∗ acc(index)∗

list �= null ∧ list .valid()∗
0 ≤ index ≤ list .size(); }

pure bool hasNext()
requires valid();

{ return index < list .size(); }

pure bool getList()
requires valid();

{ return list ; }
}

Fig. 12. The iterator design pattern
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not modified. However, a mutator’s precondition can include predicates that its
implementation relies on to call pure methods. In other words, the mutator might
require a predicate to be true only to read locations protected by the predicate.
Since the predicate’s body may not be visible to the mutator, the mutator’s
postcondition may not be able to enumerate all those locations to ensure their
value did not change. Therefore, our implementation includes a special assertion:
untouched(φ). The assertion states that (1) all locations in φ’s required access
set have the same value in the old and the new heap, (2) those locations are still
accessible in the new state and (3) the swinging pivot property holds for R(φ).

As an example, consider the classes ArrayList and Iterator from Figure 12.
The last postcondition of the method next allows the verifier to deduce that
other iterators of the same list remain valid. The conjunct accElems(items) in
ArrayList ’s invariant is a special access assertion that gives permission to access
the elements of the array. Also, note that it is ok for the invariant to read
items .length without demanding access since length is immutable.

7 Related Work

The dynamic frames approach [1,2,3,4,5,6] solves the frame problem by explic-
itly annotating methods with effect annotations. More specifically, the contract
of a mutator consists of a modifies clause and a “swinging pivot postcondition”,
while a pure method’s contract includes a reads clause. The expressiveness of the
dynamic frames approach stems from the fact that these effect annotations can
mention arbitrary sets of memory locations. To support data abstraction, these
location sets may be specified in terms of dynamic frames, i.e. pure methods or
ghost fields that denote sets of locations. As an example, consider the dynamic
frames version of the class Cell from Figure 7(a) (method swap not included)
shown in Figure 13. setX ’s contract includes a modifies clause indicating that
all locations in the dynamic frame footprint can potentially be changed by the
method. In addition, setX ’s last postcondition encodes the swinging pivot prop-
erty. The contract of each pure method includes a reads clause indicating that
its return value only depends on locations in footprint(). All the latter effect
annotations (indicated with the grey background) need to be provided by the
developer, and must be checked explicitly by the verifier. In our approach on the
other hand, none of the annotations in grey need to be provided or checked ex-
plicitly (they are free postconditions!). Instead, we only check at each field access
that the corresponding location is accessible, which allows us to deduce an up-
per bound on the set of readable and writable locations. Since access assertions
can typically be piggy-backed onto invariants, as shown in the predicate valid of
class ArrayList of Figure 12, contracts do not need to include additional effect
annotations. Moreover, as callers typically already have to establish a callee’s
invariant and the invariant is opaque to the caller, checking the access assertions
inside the callee’s precondition incurs no additional cost.

Our approach was heavily inspired by separation logic [16,15,25]. In particu-
lar, the access assertion acc(e.f) is similar to separation logic points-to predicate
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class Cell {
int x;

Cell()

modifies ∅;
ensures valid() ∧ getX () = 0;

ensures fresh(footprint());

{ x := 0; }

void setX (int v)
requires valid();

modifies footprint();

ensures valid() ∧ getX () = v;

ensures fresh(footprint()

\old(footprint()));

{ x := v; }

pure bool valid()

reads footprint();

{ return true ; }

pure set footprint()

reads footprint();

{ return { (this, x) }; }

pure int getX ()
requires valid();

reads footprint();

{ return x; }
}

Fig. 13. The class Cell with traditional dynamic frames annotations

e.f �→ and Parkinson and Bierman’s abstract predicates inspired our predicate
pure methods. To the best of our knowledge, this is the first approach based
on verification condition generation and automatic, first-order theorem proving
that encodes separation logic’s idea of deducing frame information from precon-
ditions. One difference between separation logic and implicit dynamic frames
is that we allow using heap-dependent expressions, in particular field reads and
pure method invocations, inside assertions. Distefano and Parkinson [17] recently
implemented a verifier for Java based on separation logic, called jStar. jStar re-
lies on symbolic execution, while we use the more traditional combination of
verification condition generation and automated theorem proving. The access
set used in our verification conditions resembles the coloring of objects used in
SLICK [26] for runtime checking of separation logic assertions.

In [27], the authors propose using data groups to specify side-effects. To ensure
soundness, their approach imposes two methodological restrictions: the pivot
uniqueness and owner exclusion restriction. Our approach imposes no such re-
strictions, and as a consequence it can handle programs that [27] cannot. For
example, the former restriction rules out sharing of representation objects, as is
the case in the iterator pattern.

In the universe type system [28] and the Boogie methodology [29], abstractions
(pure methods, invariants or model fields) can depend on the fields of owned
objects and the fields of peers (i.e. objects with the same owner as the receiver),
provided the abstraction is visible to the peer. For example, the method hasNext
of an iterator would have to be visible to the list class. Our approach has no
such restriction.

The use of pure methods in specifications has been discussed extensively in
the literature [11,12,13]. In particular, encoding pure methods as functions in
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the logic is a standard technique in verification. To the best of our knowledge,
this is the first approach that derives an upper bound on the set of readable
locations from preconditions of pure methods. Some authors propose broadening
the range of admissible pure methods by allowing certain side-effects. We believe
our approach can be extended to support such weakly pure methods.

Verification of Java-programs with JML-like [30] annotations has received
considerable attention in the research community [30,31,32]. To the best of our
knowledge, all the JML tools rely on explicit effect annotations for framing. We
believe those tools might benefit from our approach to reduce the number of
effect annotations.

Zee et al. [19] focus on verification of linked data structures. Their technique
for dealing with such data structures inspired our specification of linked list. In
particular, they use a ghost field to represent the set of all nodes in a list and
rely on quantification over that set in the invariant to appropriately constrain
the values and next pointers of the list.

A preliminary version of this work was presented at the 2008 FTFJP work-
shop [33]. This preliminary version already sparked the interest of other au-
thors [34]. In particular, Leino and Müller combine implicit dynamic frames
with fractional permissions and concurrency. However, they encode accessibility
differently and do not show how to deal with data abstraction or inheritance in
their encoding. Moreover, they provide no formal soundness proof.

8 Conclusion

In this paper, we improve upon the classical dynamic frames approach in two
ways: (1) method contracts are more concise and (2) fewer proof obligations
must be discharged by the verifier. We have proven soundness, implemented the
approach in a verifier prototype and demonstrated its expressiveness by verifying
several challenging examples from related work.

In the future, we plan to extend our approach to concurrent programs.
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11. Rudich, A., Darvas, Á., Müller, P.: Checking well-formedness of pure-method spec-
ifications. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS, vol. 5014,
pp. 68–83. Springer, Heidelberg (2008)

12. Jacobs, B., Piessens, F.: Inspector methods for state abstraction. Journal of Object
Technology 6(5) (2007)

13. Leino, K.R.M., Middelkoop, R.: Proving consistency of pure methods and model
fields. In: FASE (2009)

14. Leavens, G.T.: JML’s rich, inherited specifications for behavioral subtypes. In: Liu,
Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 2–34. Springer, Heidelberg
(2006)

15. Parkinson, M., Bierman, G.: Separation logic, abstraction and inheritance. In:
POPL (2008)

16. Parkinson, M., Bierman, G.: Separation logic and abstraction. In: POPL (2005)
17. Distefano, D., Parkinson, M.: jStar: Towards Practical Verification for Java. In:

OOPSLA (2008)
18. Parkinson, M.: Local Reasoning for Java. PhD thesis, University of Cambridge

(2005)
19. Zee, K., Kuncak, V., Rinard, M.C.: Full functional verification of linked data struc-

tures. In: PLDI (2008)
20. Leino, K.R.M., Müller, P.: Object invariants in dynamic contexts. In: Odersky, M.

(ed.) ECOOP 2004. LNCS, vol. 3086, pp. 491–515. Springer, Heidelberg (2004)
21. Barnett, M., Naumann, D.A.: Friends need a bit more: Maintaining invariants over

shared state. In: Kozen, D. (ed.) MPC 2004. LNCS, vol. 3125, pp. 54–84. Springer,
Heidelberg (2004)

22. Parkinson, M.: Class invariants: The end of the road? In: IWACO (2007)



172 J. Smans, B. Jacobs, and F. Piessens

23. Leino, K.R.M., Monahan, R.: Automatic verification of textbook programs that
use comprehensions. In: FTFJP (2007)

24. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694. Springer, Heidelberg (2003)

25. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
LICS (2002)

26. Nguyen, H.H., Kuncak, V., Chin, W.-N.: Runtime checking for separation logic.
In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp.
203–217. Springer, Heidelberg (2008)

27. Leino, K.R.M., Poetzsch-Heffter, A., Zhou, Y.: Using data groups to specify and
check side effects. In: PLDI (2002)

28. Müller, P.: Modular Specification and Verification of Object-Oriented Programs.
PhD thesis, FernUniversität Hagen (2001)

29. Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M., Schulte, W.: Verification
of object-oriented programs with invariants. Journal of Object Technology 3(6)
(2003)

30. Leavens, G.T., Baker, A.L., Ruby, C.: JML: A notation for detailed design (1999)
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