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I. An Introduction to Game Theory
+ Game Theory

Figure 1: John von Neumann

[1] J. von Neumann and O. Morgenstern, Theory of
Games and Economic Behavior, Princeton University
Press, Princeton, New Jersey, 1944.
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+ Non-Cooperative Game

Figure 2: John Forbes Nash Jr.

[2] J. Nash, Non-cooperative game, The Annals of
Mathematics, Vol. 54, No. 2, 286-295, 1951.
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+ Cooperative Game
(Winner of Nobel Prize in Economics 2012 with Roth)

Figure 3: Lloyd S. Shapley

[3] D. Gale, L.S. Shapley, Colle admissions and the
stability of marriage, Vol. 69, American Math. Monthly,
9-15, 1962.
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+ Normal Form Games

Definition 1.1
A normal game G = (N,S, c):
(i) Player: N = {1, 2, · · · , n}.

(ii) Strategy:

Si = {1, 2, · · · , ki}, i = 1, · · · n;

Situation (Profile):S =
∏n

i=1 Si.

(iii) Payoff function:

cj(s) : S → R, j = 1, · · · , n. (1)

Payoff:
c = {c1, · · · , cn} .
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+ Nash Equilibrium

Definition 1.2
In a normal game G, a situation

s = (x∗1, · · · , x∗n) ∈ S

is a Nash equilibrium if

cj(x∗1, · · · , , x∗j , · · · , x∗n) ≥ cj(x∗1, · · · , xj, · · · , x∗n)
j = 1, · · · , n. (2)
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Example 1.3
Consider a game G with two players: P1 and P2:

Strategies of P1: D2 = {1, 2};
Strategies of P2: D3 = {1, 2, 3}.

Table 1: Payoff bi-matrix

P1\P2 1 2 3
1 2, 1 3, 2 6, 1
2 1, 6 2, 3 5, 5

Nash Equilibrium is (1, 2).
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+ Dynamic Games

Assumptions:
(i) finitely or infinitely repeated:

G→ GN , or G→ G∞

(ii) Dynamics of strategies:
x1(t + 1) = f1(x1(t), · · · , xn(t), · · · , x1(1), · · · , xn(1))

x2(t + 1) = f2(x1(t), · · · , xn(t), · · · , x1(1), · · · , xn(1))
...
xn(t + 1) = fn(x1(t), · · · , xn(t), · · · , x1(1), · · · , xn(1)),

(3)

where xi ∈ Dki, and fi :
∏n

j=1Dt
kj
→ Dki, i = 1, · · · , n.
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+ Optimizations

Table 2: Categorization

Players\ Objectives 1 ≥ 2
1 Opr. Research Multi-obj. Decision
≥ 2 Cooper. Game Non-cooper. Game

[4] J.M. Bilbao, Cooperative Games on Combinatorial
Structures, Kluwer Acad. Pub., Boston, 2000.
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+ Cooperative Game

Definition 1.4
A transferable utility game G consists of three ingredients:

(i) n players N := {p1, · · · , pn} = {1, · · · , n};
(ii) subsets {S|S ∈ 2N}, each S is called a coalition; S = ∅

is empty coalition, S = N is complete coalition.
(iii) v : 2N → R is called the characteristic function; v(S) is

the worth of S, (which means the profit (cost:
c : 2N → R) of coalition S).

v(∅) = 0.
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Example 1.5 (Glove Game)
Consider a game G with P = {p1, p2, · · · , pn}:

R = {pi ∈ P|pi has a right hand glove}

L = {pi ∈ P|pi has a left hand glove}

Let S ∈ 2P. A singe glove (0.01), a pair of gloves (1), then:

v(S) = min{|S∩L|, |S∩R|}+0.01 [n− 2 min{|S ∩ L|, |S ∩ R|}] .
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+ Normal Form

(N, v) = (N, {Xi}, {Pi}).

The characteristic function is:

v(S) = max
x∈X ∗S

min
y∈X ∗N−S

∑
i∈S

Ei(x, y).

+ Super-additivity

Theorem 1.6
Let v be the characteristic function of a cooperative game.
Γ = (N, {Xi}, {Pi}). Then for R,T ∈ 2N, R ∩ T = ∅, we have

v(R) + v(T) ≤ v(R ∪ T).

Remark: Zero-sum (constant sum) game satisfies:

v(R) + v(T) = v(R ∪ T), ∀R ∈ 2N .
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+ Imputation

Definition 1.7
Given a cooperative game G = (N, v).

x ∈ Rn is called an imputation, if

xi ≥ v({i}), i = 1, · · · , n, (4)

N∑
i=1

xi = v(N). (5)
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II. Networked Evolutionary Game

+ What is NEG?

Definition 2.1
A networked evolutionary game, denoted by ((N,E),G,Π),
consists of
(i) a network (graph) (N,E);

(ii) an FNG, G, such that if (i, j) ∈ E, then i and j play
FNG with strategies xi(t) and xj(t) respectively;

(iii) a local information based strategy updating rule.
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+ Network Graph

Definition 2.2
1 (N,E) is called a graph, where N is the set of nodes

and E ⊂ N × N is the set of edges.
2

Ud(i) = {j|there is a path connecting i, j with leng ≤ d}

3 If (i, j) ∈ E implies (j, i) ∈ E the graph is undirected,
otherwise, it is directed.

Definition 2.3
A network is homogeneous network, if each node has
same degree (for undirected graph)/ in-degree and
out-degree(for directed graph).
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Example 2.4
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(d) :
⇀

R∞ ×
⇀

R∞

Figure 1: Some standard Networks

1

Figure 4: Some Standard Networks
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+ Fundamental Network Game

Definition 2.5
(i) A normal game with two players is called a

fundamental network game (FNG), if

S1 = S2 := S0 = {1, 2, · · · , k}.

(ii) An FNG is symmetric, if

c1,2(x, y) = c2,1(y, x), ∀x, y ∈ S0.

+ Overall Payoff

ci(t) =
1

|U(i)| − 1

∑
j∈U(i)\i

cij(t), i ∈ N. (6)
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+ Strategy Updating Rule

Definition 2.6
A strategy updating rule (SUR) for an NEG, denoted by Π,
is a set of mappings:

xi(t + 1) = fi
(
{xj(t), cj(t)

∣∣j ∈ U(i)}
)
, t ≥ 0, i ∈ N. (7)

Remark 2.7
1 fi could be a probabilistic mapping;
2 When the network is homogeneous, fi, i ∈ N, are the

same.
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+ Some SURs
Example 2.7

Π− I: Unconditional Imitation with fixed priority:

j∗ = argmaxj∈U(i) cj(x(t)), (8)

⇒

xi(t + 1) = xj∗(t). (9)

In non-unique case:

argmaxj∈U(i) cj(x(t)) := {j∗1, · · · , j∗r},

set priority:

j∗ = min{µ|µ ∈ argmaxj∈U(i) cj(x(t))}. (10)

⇒ Deterministic k-valued dynamics.
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Example 2.7(cont’d)
Π− II: Unconditional Imitation with equal probability
for best strategies.

xi(t + 1) = xj∗µ(t), with pi
µ =

1
r
, µ = 1, · · · , r. (11)

⇒ Probabilistic k-valued dynamics.
Π− III: Simplified Femi Rule. Randomly choose a
neighborhood j ∈ U(i).

xi(t + 1) =

{
xj(t), cj(x(t)) > ci(x(t))
xi(t), Otherwise.

(12)

⇒ Probabilistic k-valued dynamics.
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III. Semi-tensor Product Approach to
Logical Dynamics

+ Notations:
Set of Actions:
Dk = {1, 2, · · · , k};
∆k = {δi

k|i = 1, 2, · · · , k}, where δi
k = Coli(Ik).

i ∼ δi
k, i = 1, 2, · · · , k.

Logical Matrix:

L =
[
δi1

k δ
i2
k · · · δim

k

]
,

Briefly,
L = δk [i1 i2 · · · im] .

The set of k × m logical matrices is denoted as Lk×m.
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Am×n × Bp×q =?
+ Tensor Product:

Let A = (aij). Then

A⊗ B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
am1B am2B · · · amnB


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+ Semi-tensor Product:

Definition 3.1
Let A ∈Mm×n and B ∈Mp×q. Denote

t := lcm(n, p).

Then we define the semi-tensor product (STP) of A and B
as

A n B :=
(
A⊗ It/n

) (
B⊗ It/p

)
∈M(mt/n)×(qt/p). (13)
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+ Principle Comments

When n = p, A n B = AB. So the STP is a
generalization of conventional matrix product.
When n = rp, denote it by A �r B;
when rn = p, denote it by A ≺r B.
These two cases are called the multi-dimensional
case, which is particularly important in applications.
STP keeps almost all the major properties of the
conventional matrix product unchanged.
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+ Examples

Example 3.2

1. Let X =
[
1 2 3 −1

]
and Y =

[
1
2

]
. Then

X n Y =
[
1 2

]
· 1 +

[
3 −1

]
· 2 =

[
7 0

]
.

2. Let X =
[
−1 2 1 −1 2 3

]T and Y =
[
1 2 −2

]
.

Then

X n Y =

[
−1
2

]
· 1 +

[
1
−1

]
· 2 +

[
2
3

]
· (−2) =

[
−3
−6

]
.
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Example 3.2 (Continued)
3. Let

A =

1 2 1 1
2 3 1 2
3 2 1 0

 , B =

[
1 −2
2 −1

]
.

Then

A n B =



[
1 2 1 1

] [1
2

] [
1 2 1 1

] [−2
−1

]
[
2 3 1 2

] [1
2

] [
2 3 1 2

] [−2
−1

]
[
3 2 1 0

] [1
2

] [
3 2 1 0

] [−2
−1

]



=

3 4 −3 −5
4 7 −5 −8
5 2 −7 −4

 .
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+ Matrix Expression of Logical Functions
Vector Form of Logical Variables

Definition 3.3
(i) Assume x ∈ Dk, its vector form is defined as ~x = δx

k.
(ii) L ∈Mk×n is called a logical matrix, if Col(L) ∈ ∆k,

that is,
L =

[
δi1

k , δ
i2
k , · · · , δin

k

]
.

Briefly,
L = δk [i1, i2, · · · , in] .

(iii) The set of k × n logical matrices is denoted by Lk×n.
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+ Matrix Expression of Logical Functions (continued)

Theorem 3.4
Let y ∈ Dk0 and xi ∈ Dki, i = 1, · · · , n, and

y = f (x1, · · · , xn). (14)

Then there exists a unique matrix Mf ∈ Lk0×k (k =
∏n

i=1 ki)
such that in vector form

y = Mf nn
i=1 xi := Mf x, (15)

where x = nn
i=1xi. Mf is called the structure matrix of f ,

and (15) is the algebraic form of (14).
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+ Matrix Expression of Logical Mapping
Let xi, yj ∈ Dk, i = 1, · · · , n, j = 1, · · · ,m, and F : Dn

k → Dm
k be

yj = fj(x1, · · · , xn), j = 1, · · · ,m. (16)

Then in vector form we have

yj = Mjx, j = 1, · · · ,m. (17)

Theorem 3.5
F can be expressed as

y = MFx. (18)

where y = nm
j=1yj, and

MF = M1 ∗M2 ∗ · · · ∗Mm ∈ L2m×2n . (19)

Khatri-Rao Product: Let A ∈Mp×m, B ∈Mq×m. Then

M ∗ N = [Col1(M)n Col1(N) · · ·Colm(M)n Colm(N)] .
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An Example

Example 2.6
There are three persons.

A said: “B is a liar!”
B said: “C is a liar!”
C said: “A and B both are
liars!”

Who is the liar?
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Set P: A is honest; Q: B is honest; R: C is honest.
The logical expression is

(P↔ ¬Q) ∧ (Q↔ ¬R) ∧ (R↔ ¬P ∧ ¬Q) = 1.

Its matrix form is

L(P,Q,R) = McMc(MePMnQ)(MeQMnR)(MeRMcMnPMnQ)

We can calculate the canonical form of L(P,Q,R) as

L(P,Q,R) =

[
0 0 0 0 0 1 0 0
1 1 1 1 1 0 1 1

]
PQR = δ1

2.

Only if P =

[
0
1

]
, Q =

[
1
0

]
, and R =

[
0
1

]
, then L is true,

which means that only B is honest.
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+ Evolutionary Game
x1(t + 1) = f1(x1(t), · · · , xn(t))
x2(t + 1) = f2(x1(t), · · · , xn(t))
...
xn(t + 1) = fn(x1(t), · · · , xn(t)),

(20)

where xi ∈ Dki, and fi :
∏n

j=1Dkj → Dki, i = 1, · · · , n.
+ Algebraic Form

x(t + 1) = LFx(t); x ∈ Dk, (21)

where
LF ∈ Lk×k,

and

k =
n∏

j=1

kj.
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+ Reference Book for STP
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+ Application to Power Systems
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+ Applications to Boolean Networks etc.
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IV. Model of Networked Evolutionary
Games

+ Fundamental Evolutionary Equation
Recall SUR (7):

xi(t + 1) = fi
(
{xj(t), cj(t)

∣∣j ∈ U(i)}
)
, t ≥ 0, i ∈ N.

Since cj(t) depends on xk(t), k ∈ U(j), it follows that
xi(t + 1) depends on xj(t), j ∈ U2(i). That is, we can rewrite
(7) as

xi(t + 1) = fi({xj(t)
∣∣j ∈ U2(i)}), i ∈ N. (22)

Remark 4.1
(i) Using the SUR, the fi, i ∈ N can be determined. Then

(22) is called the FEE.
(ii) For a homogeneous network all fi are the same.
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+ Calculating FEE
Example 4.2
Consider Rock - Scissors - Cloth on R3. The payoff bi-
matrix is:

Table 3: Payoff Bi-matrix (Rock-Scissors-Cloth)

P1\P2 R = 1 S = 2 C = 3
R = 1 (0, 0) (1, −1) (−1, 1)
S = 2 (−1, 1) (0, 0) (1, −1)
C = 3 (1, −1) (−1, 1) (0, 0)

Assume the strategy updating rule is Π− I:
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Example 4.2 (cont’d)

Table 4: Payoffs→ Dynamics

Profile 111 112 113 121 122 123
C1 0 0 0 1 1 1
C2 0 1/2 -1/2 -1 -1/2 0
C3 0 -1 1 1 0 -1
f1 1 1 1 1 1 1
f2 1 1 3 1 1 1
f3 1 1 3 1 2 2

Profile 131 132 133 211 212 213
C1 -1 -1 -1 -1 -1 -1
C2 1/2 1 0 1 0 1/2
C3 0 -1 1 -1 1 0
f1 1 1 1 3 3 3
f2 1 1 3 3 2 3
f3 1 1 3 3 2 3
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Example 4.2 (cont’d)

Profile 221 222 223 231 232 233
C1 0 0 0 1 1 1
C2 -1/2 0 1/2 0 -1 -1/2
C3 1 0 -1 -1 1 0
f1 2 2 2 2 2 2
f2 1 2 2 2 2 2
f3 1 2 2 3 2 3

Profile 311 312 313 321 322 323
C1 1 1 1 -1 -1 -1
C2 -1/2 0 -1 0 1/2 1
C3 0 -1 1 1 0 -1
f1 3 3 3 2 2 2
f2 3 3 3 1 2 2
f3 1 1 3 1 2 2
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Example 4.2 (cont’d)

Profile 331 332 333
C1 0 0 0
C2 1/2 -1/2 0
C3 -1 1 0
f1 3 3 3
f2 3 2 3
f3 3 2 3
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Example 4.2 (cont’d)
Identifying 1 ∼ δ1

3, 2 ∼ δ2
3, 3 ∼ δ3

3, we have the vector form
of each fi as

xi(t + 1) = fi(x1(t), x2(t), x3(t)) = Mix1(t)x2(t)x3(t), i = 1, 2, 3,
(23)

where

M1 = δ3[1 1 1 1 1 1 3 3 3 1 1 1 2 2 2 2 2 2 3 3 3 2 2 2 3 3 3];
M2 = δ3[1 1 3 1 1 1 3 2 3 1 1 3 1 2 2 2 2 2 3 3 3 1 2 2 3 2 3];
M3 = δ3[1 1 3 1 2 2 3 2 3 1 1 3 1 2 2 3 2 3 1 1 3 1 2 2 3 2 3].
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Example 4.2 (cont’d)
Assume the strategy updating rule is Π− II:
Since player one and player 3 have no choice, f1 and f3 are
the same as in Π is BNS. That is,

M′1 = M1, M′3 = M3.

Consider player 2, who has two choices: either choose 1
or choose 3, and each choice has probability 0.5. Using
similar procedure, we can finally figure out f2 as:
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Example 4.2 (cont’d)

M′2 =

 1 1 1
2 1 1

2
1
2 0 0 0 1 1 1

2
1
2 0

0 0 0 0 1
2

1
2 0 1

2 0 0 0 0 1
2 1

0 0 1
2 0 0 0 1 1

2 1 0 0 1
2 0 0

0 0 0 0 1
2

1
2 0 1

2 0 0 0 0 0
1 1

2 1 1
2 0 0 0 1

2 1 1 0 1
2 0

0 1
2 0 1

2
1
2

1
2 1 0 0 0 1 1

2 1


Now the evolution dynamics becomes a probabilistic 3-
valued logical network. (to be completed!)
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+ FEE for Asymmetric Game
Example 4.3
Consider Boxed Pigs Game. P1: smaller pig, P2 bigger pig.
The payoffs are shown in Table 5.

Table 5: Payoff Bi-matrix for the Boxed Pigs Game

P1\P2 P W
P (2, 4) (0, 6)
W (5, 1) (0, 0)
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Example 4.3(cont’d)
Next, assume there are 4 pigs, labeled 1, 2, 3 and 4, in
which Pig 1 is the smallest pig, Pig 3 is the biggest one,
and Pig 2 and Pig 4 are mid-size pigs. The network is
shown in Figure 5.

1

2

3

4

Figure 5: The Boxed Pigs Game over a Uniformed Network
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Example 4.3(cont’d)
By comparing the payoffs and using Π− II, we can obtain
that

x1(t + 1) = f1(x1(t), x2(t), x3(t), x4(t))
= δ2[1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2]x(t)
:= M1x(t),

(24)

where x(t) = n4
i=1xi(t).

M1 = δ2[1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2].
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Example 4.3(cont’d)

x2(t + 1) = f2(x1(t), x2(t), x3(t), x4(t))

=



f 1
2 = δ2[1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2]x(t),

p1
2 = 0.25

f 2
2 = δ2[1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2]x(t),

p2
2 = 0.25

f 3
2 = δ2[1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2]x(t),

p3
2 = 0.25

f 4
2 = δ2[1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]x(t),

p4
2 = 0.25

:= M2x(t),
(25)

M2 =

[
1 1 0 0 0 0 0 0 0 0.5 0 0 0.5 0 0 0
0 0 1 1 1 1 1 1 1 0.5 1 1 0.5 1 1 1

]
.
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Example 4.3(cont’d)
Similarly, we have

x3(t + 1) = f3(x1(t), x2(t), x3(t), x4(t)) := M3x(t), (26)

M3 =[
1 0 0 0 0 0 0 0 1 0.5 0 0 0.5 0 0 0
0 1 1 1 1 1 1 1 0 0.5 1 1 0.5 1 1 1

]
.

x4(t + 1) = f4(x1(t), x2(t), x3(t), x4(t)) := M4x(t), (27)

M4 =[
1 0 0 0 1 0 0 0 0 0.5 0 0 0.5 0 0 0
0 1 1 1 0 1 1 1 1 0.5 1 1 0.5 1 1 1

]
.
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V. Analysis of Networked
Evolutionary Games

+ Two Deleting Operators

Lemma 5.1
Assume X ∈ Υp and Y ∈ Υq.

Front-Maintaining Operator:

Dp,q
f = δp[1 · · · 1︸ ︷︷ ︸

q

2 · · · 2︸ ︷︷ ︸
q

· · · p · · · p︸ ︷︷ ︸
q

],

then

Dp,q
f XY = X. (28)
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Lemma 5.1(cont’d)
Assume X ∈ Υp and Y ∈ Υq.

Rear-Maintaining Operator:

Dp,q
r = δq[12 · · · q︸ ︷︷ ︸ 12 · · · q︸ ︷︷ ︸ · · · 12 · · · q︸ ︷︷ ︸︸ ︷︷ ︸

p

],

then

Dp,q
r XY = Y. (29)
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+ From FEE to Evolutionary Dynamics

Algorithm 5.2
Assume an NEG is on Sn, with its FEE as

xi(t + 1) = Mixi−2(t)xi−1(t)xi(t)xi+1(t)xi+2(t). (30)

Using Lemma 5.1, we have

xi(t + 1) = MiDki−3,k5

r x1(t)x2(t) · · · xi+2(t)
= MiDki−3,k5

r Dki+2,kn−i−2

f nn
j=1 xj(t)

:= M̃ix(t),
(31)

where x(t) = nn
j=1xj(t).
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Algorithm 5.2(cont’d)
The evolutionary dynamics has the following form

xi(t + 1) = Mix(t), i = 1, · · · , n. (32)

The Overall dynamics as

x(t + 1) = MGx(t), (33)

where MG ∈ Lkn×kn is determined by

MG = M1 ∗M2 ∗ · · · ∗Mn. (34)
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+ Basic Structure

Theorem 5.3
Consider a k-valued logical dynamic network

x(t + 1) = Lx(t), (35)

where x(t) =
∏n

i=1 xi(t), L ∈ Lkn×kn. Then
δi

k is its fixed point, if and only if the diagonal element
`ii of L equals to 1. It follows that the number of
equilibriums of (35), denoted by Ne, is

Ne = tr(L). (36)
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Theorem 5.3(cont’d)
The number os length s cycles, Ns, is inductively
determined byN1 = Ne

Ns =
tr(Ls)−

∑
t∈P(s)

tNt

s , 2 ≤ s ≤ kn.
(37)

Note that in (37) P(s) is the set of proper factors of s. For
instance, P(6) = {1, 2, 3}, P(125) = {1, 5, 25}.
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Example 5.4
Recall Example 4.2 (Rock - Scissors - Cloth).

Consider the case when Π− I is used: Then we have
the evolutionary dynamics as

x(t + 1) = MGx(t), (38)

where

MG = M1 ∗M2 ∗M3

= δ27[1 1 9 1 2 2 27 23 27 1 1 9 10
14 14 15 14 15 25 25 29 10 14 14 27 23 27].

(39)
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Example 5.4(cont’d)

Mk
G = δ27[1 1 27 1 1 1 27 14 27 1 1 27 1

14 14 14 14 14 27 27 27 1 14 14 27 14 27],
k ≥ 2,

We can figure out that:
if x(0) ∈ {δ1

27, δ
2
27, δ

4
27, δ

5
27, δ

6
27, δ

10
27, δ

11
27, δ

13
27, δ

22
27}, then

x(∞) = x(2) = δ1
27 ∼ (1, 1, 1):

if x(0) ∈ {δ8
27, δ

14
27, δ

15
27, δ

16
27, δ

17
27, δ

18
27, δ

23
27, δ

24
27, δ

26
27}, then

x(∞) = x(2) = δ14
27 ∼ (2, 2, 2);

if x(0) ∈ {δ3
27, δ

7
27, δ

9
27, δ

12
27, δ

19
27, δ

20
27, δ

21
27, δ

25
27, δ

27
27}, then

x(∞) = x(2) = δ27
27 ∼ (3, 3, 3).

So the network converges to one of three uniformed
strategy cases with equal probability.
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Example 5.4(cont’d)
Consider the other case when Π− II is used: we
have the transition matrix as

MG = M1 ∗M′2 ∗M3. (40)

Then the dynamics of NEG is

x(t + 1) = MGx(t). (41)

(Here MG is also skipped.) We can show that

Mk
G = δ27[1 1 27 1 1 1 27 14 27 1 1 27 1

14 14 14 14 14 27 27 27 1 14 14 27 14 27],
k ≥ 16.

Same as Π− I but converges much slower.
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VI. Control of Networked
Evolutionary Games

+ Control NEG

Definition 6.1
Let ((N,E),G,Π) be an NEG,

N = X ∪W, X ∩W = ∅.

Then (X ∪W,E),G,Π) is called a control NEG, if the
strategies for nodes in W, denoted by wj ∈ W,
j = 1, · · · , |W|, can be assigned at each moment t ≥ 0.
Moreover, x ∈ X is called a state and w ∈ W is called a
control.
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+ Controllability & Stabilization

Definition 6.2
A state xd is said to be T > 0 step reachable from
x(0) = x0, if there exists a sequence of controls
w0, · · · ,wT−1 such that x(T) = xd. The set of T step
reachable states is denoted as RT(x0);
The reachable set from x0 is defined as

R(x0) := ∪∞t=1Rt(x0).
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Definition 6.2(cont’d)
A state xe is said to be stabilizable from x0, if there
exist a control sequence w0, · · · ,w∞ and a T > 0,
such that the trajectory from x0 converges to xe,
precisely, x(t) = xe, t ≥ T. xe is stabilizable, if it is
stabilizable from ∀x0 ∈ Dn

k .
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+ Analysis of Dynamics
Assume X = {x1, · · · , xn} and W = {w1, · · · ,wm}, and we
set x = nn

i=1xi and w = nm
j=1wj, where xi, wj ∈ ∆k ∼ Dk and

k = |S0|.
For each w ∈ ∆km we have a (control-depending) strategy
transition matrix (STM) Mw.
Define:

M
(
w = δi

km

)
:= Mi, i = 1, 2, · · · , km. (42)
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+ Controlled Trajectory
The set of control-depending STM is denotedMW .

Let x(0) be the initial state. Driven by control sequence

w(0) = δi0
km , w(1) = δi1

km , w(2) = δi2
km , · · · .

Then the trajectory will be

x(1) = Mi0x(0), x(2) = Mi1Mi0x(0), x(3) = Mi2Mi1Mi0x(0), · · · .
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+ Main Results

Theorem 6.3
Consider a control NEG (X ∪W,E),G,Π), with |X| = n,
|W| = m, |S0| = k.

xd is reachable from x0, if and only if there exists a
sequence {M0,M1, · · · ,MT−1} ⊂ MW , T ≤ kn, such
that

xd = MT−1MT−2 · · ·M1M0x0. (43)

xd is stabilizable from x0, if and only if (i) xd is
reachable from x0 and there exists at least one
M∗ ∈MW , such that xd is a fixed point of M∗.
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An immediate consequence of Theorem 6.3 is the
following:

Corollary 6.4
For any x0 ∈ Dn

k , the reachable set satisfies

R(x0) ⊂ ∪M∈MW Col(M). (44)
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Example 6.5
Consider a game ((N,E),G,Π), where (i) N = (X ∪W),
where X = {x1, x2, x3}, W = {w}, the network graph is
shown in Figure 66:

x1

x2

x3

w

Figure 1: BK game

1

Figure 6: Control of BK-game 66 / 75



Example 6.5(cont’d)
(ii) G is Benoit-Krishna Game with

S0 = {1(D) : Deny, 2(W) : Waffle, 3(C) : Confess}.

Payoffs:

Table 6: Payoff Table (Benoit-Krishna)

P1\P2 D = 1 W = 2 C = 3
D = 1 (10, 10) (−1, −12) (−1, 15)
W = 2 (−12, −1) (8, 8) (−1, −1)
C = 3 (15, −1) (8, 1) (0, 0)
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Example 6.5(cont’d)
(iii) Π = Π− I:
This model can be explained as follows. There is a game
of three {x1, x2, x3}.

x1 is the head, who is able to contact x2 and x3.
w is a detective, who sneaked in and is able to
contact only x2 and x3.
The purpose of w is to let all xi to confess.
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Example 6.5(cont’d)
First, we calculate the control-depending strategy
transition matrix by letting w = δi

3, i = 1, 2, 3 respectively.
Then we have

M(w = δ1
3) = M1 = δ27[1, 1, 9, 1, 1, 9, 27, 27, 27

1, 1, 9, 1, 14, 18, 27, 7, 27,
25, 25, 27, 25, 26, 27, 27, 27, 27]

M(w = δ2
3) = M2 = δ27[1, 1, 9, 1, 5, 3, 27, 27, 27

1, 11, 18, 13, 14, 14, 27, 14, 14,
25, 26, 27, 19, 14, 14, 27, 14, 27]

M(w = δ3
3) = M3 = δ27[21, 21, 27, 21, 24, 27, 27, 27, 27

21, 1, 27, 24, 14, 14, 27, 14, 27,
27, 27, 27, 27, 14, 27, 27, 27, 27].

(45)
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Example 6.5(cont’d)

R(δ1
27) = δ27{1, 21, 27} R(δ2

27) = δ27{1, 21, 27}
R(δ3

27) = δ27{9, 27} R(δ4
27) = δ27{1, 21, 27}

R(δ5
27) = δ27{1, 5, 14, 24, 21, 27} R(δ6

27) = δ27{1, 3, 9, 21, 27}
R(δ7

27) = δ27{27} · · ·
...
· · · R(δ27

27) = δ27{27}.
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Example 6.5(cont’d)
There are two common fixed points:

x1
e = δ14

27 = δ2
3 n δ2

3 n δ2
3;

x2
e = δ27

27 = δ3
3 n δ3

3 n δ3
3;

So the overall system is not stabilizable.

But any x(0) ∈ ∆27\
{
δ14

27

}
, can be stabilized to x2

e = δ27
27 via

a proper control sequence.
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Example 6.5(cont’d)
For example, when x(0) = δ6

27 = δ1
3 n δ2

3 n δ3
3, we can drive

it to x2
e by any one of the following control sequences:

(i) w(0) = δ3
3, then the trajectory will be

x(1) = M3x(0) = δ27
27;

(ii) w(0) = δ2
3, w(1) = δ3

3, then the trajectory will be
x(1) = M2x(0) = δ9

27, x(2) = M3M2x(0) = δ27
27;

(iii) w(0) = δ1
3 and w(1) can choose any one of δ1

3, δ
2
3, δ

3
3,

then the trajectory will be x(1) = M1x(0) = δ9
27, and

x(2) = M1M1x(0) = δ27
27, or x(2) = M2M1x(0) = δ27

27 or
x(2) = M3M1x(0) = δ27

27.
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VII. Conclusion

+ What we did?
A rigorous mathematical frame of Networked Evolutionary
Game (NEG) and Control Networked Evolutionary Game
is presented. It contains the followings:

Fundamental Evolutionary Equation (FEE) is
proposed, which is computable.
Using FEE, Evolutionary Dynamics of (NEGs) is
constructed.
The properties of NEG is analyzed via FEE and/or
Evolutionary Dynamics.
Controllability and Stabilizability of NGGs are
investigated. Necessary and sufficient conditions are
obtained.
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+ What else we can do?

Applied to large scale networks.
Various Control Problems for NEG.
Consensus.
Network stability strategy.
Applications to (i) Biosystem; (ii) Economical
Systems; (iii) Social Systems; etc.
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Thank you for your attention!

Question?
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