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I. An Introduction to Game Theory

= Game Theory

Figure 1: John von Neumann

® [1] J. von Neumann and O. Morgenstern, Theory of
Games and Economic Behavior, Princeton University

Press, Princeton, New Jersey, 1944. e



iz Non-Cooperative Game

Figure 2: John Forbes Nash Jr.

[4 [2] J. Nash, Non-cooperative game, The Annals of
Mathematics, Vol. 54, No. 2, 286-295, 1951.
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i Cooperative Game
(Winner of Nobel Prize in Economics 2012 with Roth)

Figure 3: Lloyd S. Shapley

[§ [3] D. Gale, L.S. Shapley, Colle admissions and the
stability of marriage, Vol. 69, American Math. Monthly,
9-15, 1962.
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iz Normal Form Games

Definition 1.1

A normal game G = (N, S, ¢):
(i) Player: N = {1,2,--- n}.
(ii) Strategy:

Si={1,2,--- k}, i=1--n

Situation (Profile):S =[], S.
(iii) Payoff function:

¢(s): S=>R, j=1,---,n (1)

Payoff:
C:{Cla"' >Cn}-
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= Nash Equilibrium

Definition 1.2
In a normal game G, a situation

s=(xj,---,x;) €S
is a Nash equilibrium if

* * * * *
Cj<x17...,7xj,...,xn)20j(xl7...7xj’... X
j=1---.n
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Consider a game G with two players: P, and P»:
@ Strategies of P;: D, = {1,2};
@ Strategies of P,: D; = {1,2,3}.

Table 1: Payoff bi-matrix

P\P, | 1 2 3
1 2,113,2|6,1
2 1,62 3

3
2

Nash Equilibrium is (1, 2).
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i Dynamic Games

Assumptions:
(i) finitely or infinitely repeated:

G—G', or G—G™

(i) Dynamics of strategies:

Xn(t+ 1) :fn(x1<t)>"' axn(t)7"' ,x1(1)7---

where x; € Dy, and f; : [[_, D, = Dy, i=1,--- ,n.
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i Optimizations

Table 2: Categorization

Players\ Objectives 1 >2
1 Opr. Research | Multi-obj. Decision
>2 Cooper. Game | Non-cooper. Game

[4 [4] J.M. Bilbao, Cooperative Games on Combinatorial
Structures, Kluwer Acad. Pub., Boston, 2000.
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i Cooperative Game

Definition 1.4
A transferable utility game G consists of three ingredients:

(I) n playerSN = {ph co 7pn} = {1’ o ,l’l},
(ii) subsets {S|S € 2"}, each S is called a coalition; S = ()
is empty coalition, S = N is complete coalition.
(iii) v:2"¥ — R is called the characteristic function; v(S) is
the worth of S, (which means the profit (cost:
c : 2Y — R) of coalition ).

v(0) =0.
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Example 1.5 (Glove Game)
Consider a game G with P = {py,pa, -+ ,pn}:

R = {p; € P|p; has a right hand glove}
L = {p; € P|p; has a left hand glove}

Let S € 2F. A singe glove (0.01), a pair of gloves (1), then:

v(S) = min{|SNL|,|SNR|}+0.01 [n — 2min{|SNL|,|S N R|}]

4
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=z Normal Form
(N,v) = (N, {X;},{P;}).
The characteristic function is:

S) = max min E; ;
¥(5) = max min 30 E(5)

i Super-additivity

Theorem 1.6

Let v be the characteristic function of a cooperative game.
['=(N,{X:},{P:}). ThenforR, T € 2V, RN T = (), we have

v(R) +v(T) <v(RUT).

Remark: Zero-sum (constant sum) game satisfies:

v(R) +v(T) =v(RUT), VR¢e2V.
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= |mputation

Definition 1.7

Given a cooperative game G = (N, v).
@ x € R" is called an imputation, if
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Il. Networked Evolutionary Game

=z What is NEG?

Definition 2.1

A networked evolutionary game, denoted by ((N, E), G, 1),
consists of

(i) a network (graph) (N, E);
(ii) an FNG, G, such that if (i,j) € E, then i and j play
FNG with strategies x;(r) and x;(¢) respectively;

(iii) a local information based strategy updating rule.
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iz Network Graph

Definition 2.2

@ (N,E) is called a graph, where N is the set of nodes
and E C N x N is the set of edges.

2]

U,(i) = {j|there is a path connecting i, j with leng < d}

Q If (i,j) € E implies (j,i) € E the graph is undirected,
otherwise, it is directed.

Definition 2.3

A network is homogeneous network, if each node has
same degree (for undirected graph)/ in-degree and
out-degree(for directed graph).
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Example 2.4

1 2
1 2 3 4
6 3 5 6 7 8
9 10 11 12
5 4
@s o (¢): Ry xRy
s P
Yy
) --- ——--
3 T o .'I,'----
5 1 1
®): Rs (d): Roo x Rou
Figure 4: Some Standard Networks e



iz Fundamental Network Game

Definition 2.5

(i) A normal game with two players is called a
fundamental network game (FNG), if

Sl :S2 = S(): {1,2, ,k}

(i) An FNG is symmetric, if

C1,2(x7 y) — C2,1(y7x)7 vxay € SO-

i QOverall Payoff

ci(t) = ;1 Z c;(t), [€N. (6)

JEU()\i
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. Strategy Updating Rule
Definition 2.6

A strategy updating rule (SUR) for an NEG, denoted by II,
is a set of mappings:

x(t+1) =f ({x0),0))je UG}, t>0, ieN. (7)

@ £ could be a probabilistic mapping;

© When the network is homogeneous, f;, i € N, are the
same.
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i Some SURs
Example 2.7

@ [I — I: Unconditional Imitation with fixed priority:

J* = argmax;c ;) ¢;(x()), (8)

xi(t+1) = x:(0). (9)
In non-unique case:
argmax;c ;) ¢;(x(1)) :== {j, -+ ,Jjr},
set priority:
j* = min{pulu € argmax,cyq (1)} (10)

= Deterministic k-valued dynamics.

v
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Example 2.7(cont’d)

@ II — II: Unconditional Imitation with equal probability
for best strategies.

: » 1
xi(l—i-l):xj;i(t)? with PL:;a /"L:]‘)'..’r‘ (11)

= Probabilistic k-valued dynamics.

@ II — 1I: Simplified Femi Rule. Randomly choose a
neighborhood j € U(i).

it 1) = {x,-@, (x(1)) > ci(x(1)) -

x;(t), Otherwise.

= Probabilistic k-valued dynamics.
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lll. Semi-tensor Product Approach to
Logical Dynamics

iz Notations:
Set of Actions:

(<) Dk={1,2,--- ,k};
@ A, ={di|li=1,2,-- ,k}, where i = Col;(I).
i~6o, =12k
Logical Matrix:
o
L= (5 0p - o),
Briefly,
L="Clivip -+ iy

@ The set of k x m logical matrices is denoted as L.
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Apxn X Bp><q =7
> Tensor Product:

Let A = (a;). Then
ayB apB --- a,B

ayB apB --- ay,B
AR B =

amlB amZB amnB
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= Semi-tensor Product:

Definition 3.1
LetA € M,,., and B € M,.,. Denote

t :=lem(n,p).

Then we define the semi-tensor product (STP) of A and B
as

AXB:=(A®1L) (BRL) € Mimmxa/p)- (13)

v
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= Principle Comments

@ Whenn=p, A x B=AB. So the STP is a
generalization of conventional matrix product.
@ When n = rp, denote it by A >, B;
when rn = p, denote it by A <, B.
These two cases are called the multi-dimensional
case, which is particularly important in applications.
@ STP keeps almost all the major properties of the
conventional matrix product unchanged.

25/75



= Examples

T.Letx=1[1 2 3 —1] andY:H.Then
XxY=[1 2]-1+[3 =1]-2=[7 0].

2. Letx =[-1 21 -1 2 3]"andy = [1 2 -2].
Then

cer- [ o) 2o -3
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Example 3.2 (Continued)

3. Let )
1211
A:2312,B:B:ﬂ
3210
Then
[1211}é [1211]:%
AxB = [2312}5 [2312]j
[3210}; [3210]:?
3 4 -3 -5
= |47 -5 -8
5 2 -7 —4
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iz Matrix Expression of Logical Functions
Vector Form of Logical Variables

Definition 3.3

(i) Assume x € D, its vector form is defined as x = &;.

(ii) L € M,, is called a logical matrix, if Col(L) € Ay,
that is,

L=[60,62,-- 8.

Briefly,
L =0 ir, o, i) -

(iii) The set of k x n logical matrices is denoted by L;,..
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iz Matrix Expression of Logical Functions (continued)

Theorem 3.4
Letye Dy, andx; € Dy, i=1,--- ,n,and
y:f(xla"' )xn)' (14)

Then there exists a unique matrix My € Ly wi (k= 1_, k)
such that in vector form

y =My X x; := Mgx, (15)

where x = x_,x;. My is called the structure matrix of f,
and (15) is the algebraic form of (14).
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iz Matrix Expression of Logical Mapping
Letx,-,yjeDk,i: L, - ,nj=1,---,m, andF:D,’j—>D,’;” be

yj:fj‘(xlvaxn)a ]:1,,7’” (16)
Then in vector form we have

y]:%xv ]:1,,7’7’1 (17)

Theorem 3.5

F can be expressed as
y = Mpx. (18)

where y = xi.,y;, and
Mp =M M, *--- %M, € Lonyom. (19)

Khatri-Rao Product: Let A € M,x,, B € Myx,u. Then
M x N = [Col; (M) x Col;(N) - - Col,,(M) x Col,,(N)].
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An Example

Example 2.6

There are three persons.
@ A said: “Bis a liar!”
@ B said: “Cis a liar!”

@ C said: “A and B both are
liars!”

Who is the liar?
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Set P: A is honest; Q: B is honest; R: C is honest.
The logical expression is

(P+ Q)N (Q <+ "R)AN(R+ —-PAN—-Q)=1.
Its matrix form is
L(P,Q,R) = M:-M.(M.PM,Q)(M.OM,R)(M.RM.M,PM, Q)
We can calculate the canonical form of L(P, Q, R) as

00 O0O0O 0
L(P,Q,R)=L i JPQRZf%-

—_ O

1
0

Only if P = m , 0 = H ,and R = m , then L is true,

which means that only B is honest.
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iz Evolutionary Game

X](t+ 1) :fl(xl(t)a e 7xn(t))
)Q(t"’ 1) :fZ(-xl(t)a e ,Xn(t))

(20)
Xo(t4 1) = fu(x1(2), - -+, xa(2)),

where x; € Dy, and f; : [[_, Dy, = Dy, i=1,--- ,n.
= Algebraic Form

x(t+ 1) = Lex(t); x € Dy, (21)
where

Lr € Lixk,

and

j=1
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1= Reference Book for STP

109 RUESEHLEC:

BHR e #F

FR 2Lk 2
B 55 R T B ERER
—BR5NA

RECR Frik: % p—
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= Application to Power Systems

s

) 3 5 4593 B i

oK BU5 ik
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= Applications to Boolean Networks etc.

(Communications and Control Engineering

Daizhan Cheng
Hongsheng Qi
Zhigiang Li

Analysis and
Control of Boolean

Networks

A Semi-tensor Product Approach

@ Springer

AN INTRODUCTION TO
SEMI-TENSOR
PRODUCT orF
MATRICESAND ITS
APPLICATIONS

Daizhan Cheng + Hongsheng Qi = Yin Zhao

W world scientific

36/75



IV. Model of Networked Evolutionary

Games

iz Fundamental Evolutionary Equation
Recall SUR (7):

xi(t+1) =f ({x0), @) e UG}, t>0, i€N.

Since () depends on xk( ), k € U(j), it follows that
x;(t+ 1) depends on x;(¢), j € U,(i). That is, we can rewrite
(7) as

x(t+1) = fil{x(n)]j € L2()}), i€N. (22)

Remark 4.1

(i) Using the SUR, the f;, i € N can be determined. Then
(22) is called the FEE.

(if) For a homogeneous network all f; are the same.
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ww Calculating FEE
Example 4.2

Consider Rock - Scissors - Cloth on R;. The payoff bi-
matrix is:

Table 3: Payoff Bi-matrix (Rock-Scissors-Cloth)

P\P,| R=1] S=2 | C=3
R=1] (0,0) | (1, =) | (=1, 1)
S=2[(=1, 1) [ (0,0) | (1, =1)
C=3(, -1 | (=1, 1) (0,0)

Assume the strategy updating rule is 11 — I:
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Example 4.2 (cont’d)

Table 4: Payoffs — Dynamics

Profile | 111 | 112 | 113 | 121 | 122 | 123
C 0 0 0 1 1 1
) 0 12 |-1/2] -1 | -1/2| 0
Cs 0 -1 1 1 0 -1
fi 1 1 1 1 1 1
b 1 1 3 1 1 1
f 1 1 3 1 2 2

Profile | 131 | 132 | 133 | 211 | 212 | 213
C, -1 -1 -1 -1 -1 -1
G 1/2 1 0 1 0 1/2
Cs 0 -1 1 -1 1 0
fi 1 1 1 3 3 &)
b 1 1 3 3 2 3
f 1 1 3 3 2 3
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Example 4.2 (cont’d)

™0 QY (s¢)
1

Al Q] [o\]
— —
(4p] Al (4p]
Al (qV]
No Q- | = =

o — |~ |— [— oM m|—
Al v ®| |77
Q@ Q2
= =], | | _, = =], | _,
IS 18]S SRR R kA SN ORSEEN AN
o o
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Example 4.2 (cont’d)

Profile | 331 | 332 | 333
C, | 00O
C, |12 [-1/2| 0
G, | 1| 1] 0
7 33 |3
2 3|2 | 3
f 3| 2| 3
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Example 4.2 (cont’d)
Identifying 1 ~ 63, 2 ~ 43, 3 ~ 43, we have the vector form
of each f; as

xi(t+ 1) = fi(x1(2),x2(2),x3(2)) = Mix (t)x2(t)x3(2), i=1,2,3
(23)

My = 65[111111333111222222333222333
My, = 65[113111323113122222333122323

My = 5[113122323113122323113122323].

42/75



Example 4.2 (cont’d)

Assume the strategy updating rule is 11 — II:
Since player one and player 3 have no choice, f; and f; are
the same as in 1T is BNS. That is,

M, =M, M,=M;.

Consider player 2, who has two choices: either choose 1
or choose 3, and each choice has probability 0.5. Using
similar procedure, we can finally figure out 1> as:

4
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Example 4.2 (cont’d)

S — O
—laN—= O
—NO —=IN
— O O
— O O
S O
O —Ila—=IxN
S O
—la—=IN O
—laN—= O
— O O
—NO —I
— O O

— o O

- 1
S O —

S —la—I
S O —~
S — O
S — O
—la—= O
S O —
—aNO —Ia
—NO —I
S —la—I
S — O
S —la=la

S — O

Now the evolution dynamics becomes a probabilistic 3-

valued logical network. (to be completed!)

v
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ww FEE for Asymmetric Game
Example 4.3

Consider Boxed Pigs Game. P;: smaller pig, P, bigger pig.
The payoffs are shown in Table 5.

Table 5: Payoff Bi-matrix for the Boxed Pigs Game

P\P,| P W
P (2, 4) | (0, 6)
w (5, 1) | (0, 0)
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Example 4.3(cont’d)

Next, assume there are 4 pigs, labeled 1, 2, 3 and 4, in
which Pig 1 is the smallest pig, Pig 3 is the biggest one,
and Pig 2 and Pig 4 are mid-size pigs. The network is
shown in Figure 5.

3

Figure 5: The Boxed Pigs Game over a Uniformed Network
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Example 4.3(cont’d)

By comparing the payoffs and using IT — 71, we can obtain
that

211+ 1) = filx(r),x2(2), x3(1), xa(7))
—5[1212222222222222x(1) (24)
= Mx(1),

where x(t) = x_ x;(1).

My =6[1212222222222222].
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Example 4.3(cont’d)

x(t + 1) = fo(xi (1), x2(1), x3(2), x4(2))
(F=6)[1,1,2,2,2,2,2,2,2,1,2,2,1,2,2, 2)x(5),
ph =025
2 NN NN NN O NN NN ()
- p3 =025
=\ B =5[1,1,2,2,2,2,2,2,2,2,2,2,1,2,2, 2Jx(0),
ps =0.25
£ 801,1,2,2,2,2,2,2,2,2,2,2,2,2,2, 2Jx(2),
| p3=025
= sz(l),

O =
O =
— O
— O
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Example 4.3(cont’d)
Similarly, we have

x3(t 4+ 1) = f(0 (1), x2(1), 23(1), xa (1)) := M3x(t),

M; =
1 0000O0OO0OO0OT1O0500050
01111111005 1T1205°1

x4t + 1) = fa(xi(2), x2(1), x3(2), x4(2)) := Max(2),

S =
»—*O|
— O
— O
O =
— O
— O
- O
— O
o <o
W
— O
— O
o o
WD
— O

[y

)
[S—

(26)

(27)
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V. Analysis of Networked
Evolutionary Games

i Two Deleting Operators

Lemma 5.1
Assume X € 7, and Y € 7,,.
@ Front-Maintaining Operator:

DJ’,””:(5P[1---1 242 i pe-- ]7

q q q

then

DXY = X. (28)
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Lemma 5.1(cont’d)
Assume X € 7, and Y € 7,,.
@ Rear-Maintaining Operator:

DP9 =6,12---q12---q -~ 12---¢],

(. J
-~

p

then

DPXY =Y. (29)
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== From FEE to Evolutionary Dynamics
Algorithm 5.2
Assume an NEG is on S, with its FEE as

xi(t+ 1) = Mix;_o(8)xi—1 (£)x;(£) %51 (£)xi52(2). (30)

Using Lemma 5.1, we have

x(t+1) = MiDlﬁi_a’ksxl(t)fZ(l)z'"xi+2(t)
i—3 ki+ ,k"_i_ P
= MDD " x;(t) (31)
= M,‘X([),

where x(t) = x7_,x;(t).
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Algorithm 5.2(cont’d)
The evolutionary dynamics has the following form

xi(t+1)=Mux(t), i=1,---,n (32)
The Overall dynamics as
x(t+ 1) = Mgx(1), (33)
where Mg € Ly IS determined by

MG:Ml*Mz*"'*Mn. (34)
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1> Basic Structure

Theorem 5.3
Consider a k-valued logical dynamic network

x(r 4 1) = Lx(1), (35)

where x(t) = [[_, xi(t), L € Lynxs». Then
@ 4} is its fixed point, if and only if the diagonal element
¢; of L equals to 1. It follows that the number of
equilibriums of (35), denoted by N, is

N, = tr(L). (36)

v
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Theorem 5.3(cont’d)

@ The number os length s cycles, Ny, is inductively
determined by

Ny =N,
w(L)— Y N (37)

Ny=—"P9  2<g<kn

s

v

Note that in (37) P(s) is the set of proper factors of s. For
instance, P(6) = {1,2,3}, P(125) = {1,5,25}.
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Example 5.4
Recall Example 4.2 (Rock - Scissors - Cloth).

@ Consider the case when II — I is used: Then we have
the evolutionary dynamics as

x(t+ 1) = Mgx(t), (38)
where

MG = Ml*Mz*Mg
= 0p[11912227232711910
14 14 15 14 15252529 10 14 14 27 23 27].
(39)

<
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Example 5.4(cont’d)

Mt = 65[112711127142711271
14 14 14 14 1427 2727 1 14 14 27 14 27),

k> 2,

We can figure out that:
° If X(O) € {5577 5%77 5377 6377 5377 5597 6%47 5537 5%%}’ then
x(00) = x(2) = 63, ~ (1,1,1):
@ if x(0) € {05, 037,023, 655, 037, 655, 033, 037, 035 }, then
x(00) = x(2) = 637 ~ (2,2,2);
© if x(0) € {03,03;, 037,027, 039, 037, 037, 033, 637 }, then
x(o0) = x(2) = 637 ~ (3,3,3).
So the network converges to one of three uniformed
strategy cases with equal probability.
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Example 5.4(cont’d)

@ Consider the other case when II — 7 is used: we
have the transition matrix as

Mg = My * M5 x M. (40)
Then the dynamics of NEG is
x(t4+ 1) = Mgx(1). (41)
(Here Mg is also skipped.) We can show that

ME = 6p[112711127142711271
14 14 14 14 1427 27 27 1 14 14 27 14 27|,
k > 16.

Same as II — I but converges much slower.
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VI. Control of Networked
Evolutionary Games

=z Control NEG

Definition 6.1
Let ((N,E), G,II) be an NEG,

N=XUW, XNW=0.

Then (XU W,E),G,1I) is called a control NEG, if the
strategies for nodes in W, denoted by w; € W,
j=1,--- |W|, can be assigned at each moment ¢ > 0.
Moreover, x € X is called a state and w € W is called a
control.
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= Controllability & Stabilization

Definition 6.2

@ A state x, is said to be T > 0 step reachable from
x(0) = xy, if there exists a sequence of controls
wo, - -+ ,wr_1 such that x(T) = x,. The set of T step
reachable states is denoted as Ry (xo);

@ The reachable set from x, is defined as

R(XO> = Ulet(xo).
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Definition 6.2(cont’d)

@ A state x, is said to be stabilizable from x,, if there
exist a control sequence wy,--- ,w,, anda T > 0,
such that the trajectory from x, converges to x.,
precisely, x(1) = x., t > T. x, is stabilizable, if it is
stabilizable from Vx, € Dj.
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iz Analysis of Dynamics

Assume X = {x;, -+ ,x,; and W = {wy,--- ,w,}, and we
set x = xi_;x; and w = x,w;, where x;, w; € A, ~ Dy and
k= So|.

For each w € A;» we have a (control-depending) strategy
transition matrix (STM) M,,.

Define:

M(w=0w) =M, i=12-- K" (42)
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iz Controlled Trajectory
The set of control-depending STM is denoted My,.

Let x(0) be the initial state. Driven by control sequence
w(0) = 0, w(l) =&, w(2) = 02, ---
Then the trajectory will be

x(l) = Miox(0)7 X(Z) = MilMiox(O)v x(3) = MithMl'ox(O)? T
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=z Main Results

Theorem 6.3
Consider a control NEG (X U W, E), G, 1I), with |X| = n,
|W| =m, |So| = k.
@ x, is reachable from x, if and only if there exists a
sequence {My,M;,--- ,Mr_} C My, T <k", such
that

Xg = Myr_{My_5 - - MiMoyxy. (43)

@ x, is stabilizable from x, if and only if (i) x, is
reachable from x, and there exists at least one
M* € My, such that x, is a fixed point of M*.
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An immediate consequence of Theorem 6.3 is the
following:

Corollary 6.4

For any x, € D}, the reachable set satisfies

R(X()) C UMEMW COI(M) (44)
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Example 6.5

Consider a game ((N,E),G,II), where (i) N = (XU W),
where X = {xy,x,,x3}, W = {w}, the network graph is
shown in Figure 66:

L2

X3
Zq

w

Figure 6: Control of BK-game
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Example 6.5(cont’d)
(i) G is Benoit-Krishna Game with

So={1(D) : Deny, 2(W): Waffle, 3(C): Confess}.

Payoffs:
Table 6: Payoff Table (Benoit-Krishna)
Pi\P, D=1 W=2 C=3
D=1 (10, 10) | (-1, —12) | (=1, 15)
C=3| (15 —-1) (8, 1) (0, 0)

67 /75



Example 6.5(cont’d)

(i) I =11 —1I:

This model can be explained as follows. There is a game
of three {x;,x,, x3}.

@ x; is the head, who is able to contact x, and x;.

@ w is a detective, who sneaked in and is able to
contact only x, and x;.

@ The purpose of w is to let all x; to confess.
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Example 6.5(cont’d)

First, we calculate the control-depending strategy
transition matrix by letting w = 6, i = 1, 2, 3 respectively.
Then we have

Mw=23) =M, = 06y[1,1,9,1,1,9,27,27,27
1,1,9,1,14,18,27,7,27,
25,25,27,25,26,27,27,27,27]

Mw=8) =M, = 6»[1,1,9,1,5,3,27,27,27
1,11,18, 13,14, 14,27, 14, 14,
25,26,27,19, 14, 14,27, 14, 27]

Mw=8) =M= 0y[21,21,27,21,24,27,27,27,27
21,1,27,24,14,14,27,14,27,
27,27,27,27,14,27,27,27,27).

(45)
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Example 6.5(cont’d)

R(0};) = 6:{1,21,27} R(03) = 6,7{1,21,27}
R(83;) = 6x1{9, 27} R(cS ) = 6,{1,21,27}
R(63,) = 6»7{1,5,14,24,21,27} R( ) = 02,{1,3,9,21,27}
R(5;7) = 527{27}

R(63)) = 67{27}.
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Example 6.5(cont’d)
There are two common fixed points:
°

1 s14 _ 2 2 2.
X, = 0,7 = 03 X 03 X 03;

X2 =03 =63 X 83 X 03;
So the overall system is not stabilizable.

But any x(0) € Ay;\ {437}, can be stabilized to x2 = 3] via
a proper control sequence.
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Example 6.5(cont’d)

For example, when x(0) = &5, = 4} x 67 x 63, we can drive
it to x2 by any one of the following control sequences:

(i) w(0) = 43, then the trajectory will be
x(1) = M3x(0) = 637;
(ii) w(0) = 62, w(1) = 63, then the trajectory will be
x(1) = Myx(0) = 63, x(2) = M3M»x(0) = 637;
(iii) w(0) = 6} and w(1) can choose any one of 8}, 63, 43,
then the trajectory will be x(1) = M;x(0) = §5,, and
)C(2) = M]M])C(O) = 5%;, or x(2) = Mle.X(O) = (5%; or

x(2) = M3M,x(0) = 637.
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VII. Conclusion

. What we did?

A rigorous mathematical frame of Networked Evolutionary
Game (NEG) and Control Networked Evolutionary Game
is presented. It contains the followings:

@ Fundamental Evolutionary Equation (FEE) is
proposed, which is computable.

@ Using FEE, Evolutionary Dynamics of (NEGs) is
constructed.

@ The properties of NEG is analyzed via FEE and/or
Evolutionary Dynamics.

@ Controllability and Stabilizability of NGGs are
investigated. Necessary and sufficient conditions are
obtained.
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i What else we can do?

@ Applied to large scale networks.

@ Various Control Problems for NEG.

@ Consensus.

@ Network stability strategy.

@ Applications to (i) Biosystem; (ii) Economical
Systems; (iii) Social Systems; etc.
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Thank you for your attention!

Question?
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