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We report conjectures on the three-dimensional (3D) Ising model of simple
orthorhombic lattices, together with details of calculations for a putative exact
solution. Two conjectures, an additional rotation in the fourth curled-up
dimension and weight factors on the eigenvectors, are proposed to serve as a
boundary condition to deal with the topologic problem of the 3D Ising model.
The partition function of the 3D simple orthorhombic Ising model is evaluated by
spinor analysis, employing these conjectures. Based on the validity of the
conjectures, the critical temperature of the simple orthorhombic Ising lattices
could be determined by the relation of KK*¼KK0 þKK00 þK0K00 or sinh 2K � sinh
2(K0 þK00 þ (K0K00/K))¼ 1. For a simple cubic Ising lattice, the critical point is
putatively determined to locate exactly at the golden ratio xc ¼ e�2Kc ¼

ðð
ffiffiffi
5
p
� 1Þ=2Þ, as derived from K*¼ 3K or sinh 2K � sinh 6K¼ 1. If the conjectures

would be true, the specific heat of the simple orthorhombic Ising system would
show a logarithmic singularity at the critical point of the phase transition.
The spontaneous magnetization of the simple orthorhombic Ising ferromagnet is
derived explicitly by the perturbation procedure, following the conjectures.
The spin correlation functions are discussed on the terms of the Pfaffians, by
defining the effective skew-symmetric matrix Aeff. The true range �x of the
correlation and the susceptibility of the simple orthorhombic Ising system are
determined by procedures similar to those used for the two-dimensional Ising
system. The putative critical exponents derived explicitly for the simple
orthorhombic Ising lattices are �¼ 0, �¼ 3/8, �¼ 5/4, �¼ 13/3, �¼ 1/8 and
�¼ 2/3, showing the universality behaviour and satisfying the scaling laws.
The cooperative phenomena near the critical point are studied and the results
based on the conjectures are compared with those of approximation methods and
experimental findings. The putative solutions have been judged by several criteria.
The deviations of the approximation results and the experimental data from the
solutions are interpreted. Based on the solution, it is found that the 3D-to-2D
crossover phenomenon differs with the 2D-to-1D crossover phenomenon and
there is a gradual crossover of the exponents from the 3D to the 2D values.
Special attention is also paid to the extra energy caused by the introduction of the
fourth curled-up dimension and the states at/near infinite temperature revealed by
the weight factors of the eigenvectors. The physics beyond the conjectures and the
existence of the extra dimension are discussed. The present work is not only
significant for statistical and condensed matter physics, but also fill the gap
between the quantum field theory, cosmology theory, high-energy particle
physics, graph theory and computer science.
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1. Introduction

The Ising model is of considerable physical significance and value in uncovering
principles in the physical world [1]. It was conceived as a description of magnetism
in crystalline materials, but is also applicable to phenomena as diverse as the
order–disorder transformation in alloys [2–7], transition of liquid helium to its
suprafluid state, freezing and evaporation of liquids, the behaviour of glassy
substances and even the folding of protein molecules into their biologically active
forms. In accordance with the Yang and Lee’s theorems [8, 9], the problem of an
Ising model in a magnetic field is mathematically equivalent to a lattice gas. The
widespread interest in the Ising model is primarily derived from the fact that it is one
of the simplest examples describing a system of interacting particles (or atoms or
spins). The Ising model is an excellent test case for any new approximation method
of investigating systems of interacting particles, especially in understanding the
cooperative phenomena and critical behaviour at/near the critical point of a
continuous phase transition. Furthermore, the 3D Ising model can serve as a testing
model for the evolution of a system of interacting particles (or spins) from infinite
temperature down to zero, as it is possible to see the analogy of temperature in the
thermodynamics to a variable of time in the dynamics. Therefore, the exact solutions
are helpful in understanding the evolution of an equilibrium infinite system, not only
for a magnet but also for the Universe. In addition, the formal theory of equilibrium
phase transitions has found applications in problems such as continuous quantum
phase transitions [10, 11], constructing field and string theories of elementary
particles, the transition to chaos in dynamical systems, the long-time behaviour of
systems out of equilibrium and dynamic critical phenomena [12].

It is well understood that only the exact solution of a system of interacting
particles can be used to fully reveal the cooperative phenomena and critical
behaviour at/near the critical point. The two-dimensional (2D) Ising model is one of
the few examples solved explicitly [13]. The partition function for the 2D Ising model
was evaluated exactly by Onsager [13] using the approach introduced by Kramer and
Wannier [14, 15], and Montroll [16]. Later, the problem was solved exactly by
a simple and elegant spinor analysis developed by Kaufman and Onsager [17–19].
The temperature dependence of magnetization of a square, rectangular or triangular
Ising magnet was calculated by Yang [20], Chang [21] and Potts [22], respectively,
using a perturbation method. Newell [23] showed the equalization between
a cylindrical crystal studied by Onsager and Kaufman [13, 17–19] and a screw
crystal studied by Kramers and Wannier [14, 15]. The statistical mechanics of
2D Ising triangular, honeycomb and Kagomé nets was resolved by various authors
[24–38]. A general lattice–statistical model, which included soluble 2D models of
phase transitions, such as the ice model [39, 40], hydrogen-bonded ferroelectrics and
antiferroelectrics models [41–51], has been proposed [52]. Only a limited number of
three-dimensional (3D) systems have been solved, including the four-spin
interaction Ising model solved by Suzuki [53], the Zamolodchikov model [54]
solved by Barter [55] and its N-state extension by Bazhanov and Baxter [56], the 3D
dimer model solved by Huang et al. [57]. However, the Suzuki model is actually a 2D
system [53, 57], while the Zamolodchikov model and its extension involve unphysical
negative Boltzmann weights [55–57]. The Huang et al. [57] 3D dimer model,
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consisting of layered honeycomb dimer lattices with a specific layer–layer
interaction, is the only solvable 3D lattice model with physical Boltzmann
weights, but describes dimer configurations in which dimers are confined in
planes. As a consequence, the critical behaviour of this 3D dimer model is essentially
two-dimensional [58].

The exact solution of the 3D Ising model presents fundamental difficulties.
The most reliable information on the behaviour of the 3D Ising model has been
provided by exact series expansions of the partition function at low and high
temperatures [59–125] and by renormalization group theory near the critical point
[126–191] and Monte Carlo simulations [154–186]. Although the region near the
critical point has been explored by various approximation methods and its physical
properties have been determined numerically with high precision [59–191], to date,
physicists have failed to provide the exact mathematical solution for the 3D Ising
model. It is clear that the 3D Ising model cannot be exactly solved within the
framework of the procedure for solving the 2D Ising lattice, which is disappointing
for 3D physicists.

The difficulty in solving the 3D Ising model is evident as it is much more
complicated than the 2D Ising model, which is already complex. Attempts to apply
the algebraic method used for solving the 2D model to the 3D problem are seriously
hindered at an early stage because the operators generate Lie algebras so large as to
be of little value [59]. All previous algebraic methods have taken advantage of special
properties of the operators and it was not possible to generalize them in any
significant way to deal with the 3D Ising system successfully [59]. No spinors,
Lie algebras or other specialized algebraic techniques of the type used in the matrix
method are required in the combinatorial method, developed by Kac and Ward [60].
However, the combinatorial method introduces some problems in topology that have
not been rigorously resolved. This combinatorial method of counting the closed
graph cannot be adapted in any obvious way to the 3D problem, as the peculiar
topological property of a polygon in three dimensions does not divide the space into
an ‘inside and outside’ [59]. Realizing the numerous problems, many authors have
tried various methods to generate approximation results, such as series expansions
[61–125], renormalization group and Monte Carlo techniques [126–207], among
others. However, any approximation method cannot provide exact information
at/near the critical point since, whenever the thermodynamic functions have an
essential singularity, it is difficult to perform any computation by successive
approximation because the convergence by analytic functions in such cases is
notoriously slow [13].

In this work, we shall try to derive a putative exact solution to the 3D Ising
model, which must exist in nature, on simple orthorhombic lattices. A completely
new mathematical technique must be developed to overcome the various difficulties.
This novel mathematical technique must be outside the boundary of previous
methods, although we have to follow the processes developed by Onsager, Kaufman
and Yang, among others [13, 17–20]. The partition function of the simple
orthorhombic Ising model will be evaluated by spinor analysis by introducing
two conjectures employing an additional rotation in the fourth curled-up dimension
and weight factors on the eigenvectors. These conjectures serve as boundary
conditions to deal with the topologic problem of the 3D Ising model so that its

3D-ordering in Ising magnet 5311
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partition function could be evaluated successfully. By introducing the conjectures,
a simple and beautiful solution emerges from a complicated system, automatically
and spontaneously. The solutions will be compared with the results of various
approximations and experiments. The putative exact solutions have been judged by
several criteria. The deviations of approximation results and experimental data from
the putative solutions are interpreted. The physics beyond the conjectures and the
existence of the extra dimension are discussed. The simple and elegant results suggest
that the target has been accurately achieved. Nevertheless, it should be emphasized
that the validity of the putative solutions depends on the conjectures. In section 2, the
simple orthorhombic Ising model will be described briefly and the matrix problem set
up. In section 3, the partition function of the simple orthorhombic Ising model will
be evaluated by spinor analysis with the help of two conjectures and the specific heat
of the simple orthorhombic Ising system will be studied. In section 4, the
spontaneous magnetization of the simple orthorhombic Ising magnet will be derived
by the perturbation procedure, based on the validity of the conjectures. In sections 5
and 6, the correlation function and susceptibility will be investigated. In section 7,
the critical exponents at/near the critical point will be compared with the results of
previous approximations and experiments. Sections 8 and 9 contain the discussions
and summary. Evaluation of the weight factors are performed in Appendices A and
B, respectively, for the simple cubic lattice and the simple orthorhombic lattice.
The purpose of the article is to present the calculation procedure and final results of
our solutions in comparison with other approximation methods and the
experimental data, not to a comprehension review of all advances in the Ising
model, which is beyond the scope of this article. Readers interested in advances in
various approximation techniques, such as the series expansions, Monte Carlo
simulations and the renormalization group techniques, etc., as well as in the
experiments, are referred to existing reviews [59, 103–107, 141–144, 149, 152–160,
192–202, 208–225] and references therein.

2. Model and setting up the matrix problem

A system similar to most real systems in 3D, where the atoms occupy blocks on a 3D
lattice, like a collection of stacked boxes, was used to establish a 3D Ising model.
Our physical model is a simple orthorhombic lattice with m rows and n sites per row
in one of l planes. Each site in the lattice could be indexed by (i, j, k) for its location
in the coordinate system (rows, column, plane). These sites are occupied by
two kinds of constituent atoms, each of which can have its magnetic pole pointing in
one of two opposite orientations. In our 3D Ising model of spin 1/2, only interactions
between the nearest neighbour atoms are taken into account. Within one plane,
the energy of interaction is þJ between unlike neighbours in a row, and þJ0 between
unlike neighbours in a column; but �J or �J0 between like neighbours in a row
or column, respectively. The energy is þJ00 (or �J00) for interaction between unlike
(or like) neighbours connecting two neighbouring planes. The unlike or like
neighbours correspond to the anti-parallel or parallel arrangement of neighbouring
spins. Clearly, our simple orthorhombic Ising model is an extension of the

5312 Z.-D. Zhang
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rectangular Ising model dealt with by Onsager [13] and Kaufman [17]. The

Hamiltonian of the 3D Ising model on simple orthorhombic lattices is written as:

H
_

¼ �J
Xn
�¼1

Xm
	¼1

Xl
�¼1

s
ð�Þ
	,�s
ð�þ1Þ
	,� � J 0

Xn
�¼1

Xm
	¼1

Xl
�¼1

s
ð�Þ
	,�s
ð�Þ
	þ1,� � J 00

Xn
�¼1

Xm
	¼1

Xl
�¼1

s
ð�Þ
	,�s
ð�Þ
	,�þ1: ð1Þ

The probability of finding the simple orthorhombic Ising lattices in a given

configuration, at temperature T, is proportional to exp{�Ec/kBT}, where Ec is the

total energy of the configuration and kB is the Boltzmann constant. The exponent

appearing in the expression for the probability is always of the form:

ðnc � Jþ nc
0 � J 0 þ n 00c � J

00Þ

kBT
:

Here nc, n
0
c and n 00c are integers depending on the configuration of the lattice. Again,

it is convenient to introduce variables K� (J/kBT ), K0 � (J0/kBT ) and K00 � (J00/kBT )

instead of J, J0 and J00. Note that the notation K is the same as H in studies of

Onsager and Kaufman [13, 17, 18] and Yang [20]. Then, the probability of a

configuration reads as:

1

Z
expfncKþ n 0cK

0 þ n 00c K
00g

where Z is the partition function for the lattice:

Z ¼
X

all configurations

encKþn
0
cK
0þn 00c K

00

: ð2Þ

The thermodynamic functions for the simple orthorhombic Ising model can be

found from knowledge of Z but, unfortunately, the problem is much more complex

than the case of a 2D Ising model, since the number of terms in Z is 2m � n � l.

Following the procedure developed by Kaufman [17], we also introduce the fiction of

spin attributed to each atom. All atoms of one type will be given the spin þ1, the

others a spin �1. So, the interaction between two neighbouring atoms with spins 
,

0 is: �
 
0K (or �
 
0K0 or �
 
0K00) for row (or column or plane) neighbours.

The configurations of the magnet can now be specified either by stating the value of


 at each site of the magnet or by considering the row configurations. The latter

is more convenient. Since within one plane there are n atoms in a row and there

are l planes, there are 2n � l possible configurations, 1� �� 2n � l. Then, the configura-

tion of the simple orthorhombic Ising model is given by the set {�1, �1, . . . , �m}.
The energy due to interactions within the ith row in all the planes is denoted

by E0(�i); the energy due to interaction between two adjacent rows in all the planes

by E(�i, �iþ1); the energy due to interaction between two ith rows in two adjacent

planes by E00(�i). As a result, the energy of a configuration of the crystal is

represented as:

Ec ¼
Xm
i¼1

E 0ð�iÞ þ
Xm
i¼1

E 00ð�iÞ þ
Xm
i¼1

Eð�i, �iþ1Þ: ð3Þ

3D-ordering in Ising magnet 5313



D
ow

nl
oa

de
d 

B
y:

 [Z
ha

ng
, Z

-D
] A

t: 
00

:3
4 

31
 O

ct
ob

er
 2

00
7 

For the purpose of symmetry, it is assumed that the mth row in each plane of the

crystal interacts with the first row in that plane. Thus, we actually apply the

cylindrical crystal model preferred by Onsager [13] and Kaufman [17], in which we

wrap our crystal on cylinders. However, in the present 3D case, there are l coaxial

cylinders corresponding to l planes, while in the 2D case there is only a cylinder.

Making the abbreviations:

ðV1Þ�i�iþ1 � exp
�Eð�i, �iþ1Þ

kBT

� �
, ð4aÞ

ðV2Þ�i�i � exp
�E 0ð�iÞ

kBT

� �
, ð4bÞ

ðV3Þ�i�i � exp
�E 00ð�iÞ

kBT

� �
, ð4cÞ

one finds that the probability of a configuration is proportional to

e�Ec=kBT ¼ ðV3Þ�1�1 ðV2Þ�1�1 ðV1Þ�1�2ðV3Þ�2�2ðV2Þ�2�2 ðV1Þ�2�3 � � � �

� ðV3Þ�m�mðV2Þ�m�mðV1Þ�m�1 : ð5Þ

Therefore, the partition function becomes:

Z ¼
X

�1,�2,...�m

ðV3Þ�1�1ðV2Þ�1�1ðV1Þ�1�2 . . . ðV3Þ�m�mðV2Þ�m�mðV1Þ�m�1

� traceðV3V2V1Þ
m: ð6Þ

Since for each i: 1� �i� 2n � l, we find that V1, V2 and V3 are 2n � l-dimensional

matrices and V2 and V3 are diagonal. V1, V2 and V3 can be given explicitly as:

V3 ¼ exp K 00 �
Xn
r¼1

Xl
s¼1

s 00r,ss
00
r,sþ1

( )
� expfK 00 � A 00g, ð7aÞ

V2 ¼ exp K 0 �
Xl
s¼1

Xn
r¼1

s 0r,ss
0
rþ1,s

( )
� expfK 0 � A 0g, ð7bÞ

V1 ¼ ð2 sinh 2KÞ
n�l=2
� exp K � �

Xl
s¼1

Xn
r¼1

Cr,s

( )
: ð7cÞ

Here s 00r,s, s
0
r,s and Cr,s are 2n � l-dimensional quaternion matrices:

s 00r,s � 1� 1� � � � � 1� s 00 � 1� � � � � 1, ð8aÞ

s 0r,s � 1� 1� � � � � 1� s 0 � 1� � � � � 1, ð8bÞ

Cr,s � 1� 1� � � � � 1� C� 1� � � � � 1, ð8cÞ

5314 Z.-D. Zhang
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there are n � l factors in each direct-product, with s00, s0 and C appearing in the (r, s)th
position. s00, s0 and C are generators of the Pauli spin matrices:

s 00 �
0 �1
1 0

� �
, s 0 �

1 0
0 �1

� �
, C �

0 1
1 0

� �
, 1 ¼

1 0
0 1

� �
: ð9Þ

K* is defined by

e�2K � tanhK �: ð10Þ

Here, for simplicity, at the beginning of diagonalization procedure, we set up
the largest only among K, K0 and K00 as the standard axis for defining K*.
This specialization will be discussed in detail later.

We redefine V1 to remove the scalar coefficient:

V1 � exp K � �
Xl
s¼1

Xn
r¼1

Cr,s

( )
� expfK � � Bg: ð11Þ

Then, the partition function is reduced to

Z ¼ ð2 sinh 2KÞðm�n�lÞ=2 � trace ðV3V2V1Þ
m
� ð2 sinh 2KÞðm�n�lÞ=2 �

X2n�l
i¼1

lmi : ð12Þ

where li are the eigenvalues of V�V3 �V2 �V1.

3. Partition function

In this section, we shall try to evaluate the partition function of the 3D simple
orthorhombic Ising crystal by the spinor analysis developed by Kaufman [17] and by
introducing two conjectures.

Before dealing with the problem, one needs to analyze the root of the difficulties
with the 3D Ising model and the essential difference between the 2D and 3D models.
Obviously, the 2D is flat, whereas the 3D has the additional third dimension.
The essential difference between the 2D and 3D Ising models is more complex – the
key is the difference in topology – the pattern of connections between the
nearest-neighbour sites. After comparing the formulae in section 2 with those for
the 2D Ising model [17], one finds that, in the 3D case, many of the bonds are
nonplanar. These bonds in the 3D Ising model cross over with those in other planes,
whereas a 2D rectangular (and even triangular or hexagonal) lattice can always be
drawn without crossings, except for a 2D lattice with the next nearest neighbours
plus the nearest neighbours [59]. A 2D triangular net can be transformed from a
square net with an additional interaction along one of the diagonals [59].
Unfortunately, it has not been possible to solve the case of the interactions along
both diagonals for the 2D models. Indeed, no cases that have been solved exactly
involve interactions with such crossings. This topological distinction seems to be at
the root of all the difficulties with the 3D Ising lattice where the topology of closed
paths involve knots [59].

3D-ordering in Ising magnet 5315
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3.1. Representation of V via spin matrices

It is clear that matrices of the type exp(a00 � s 00r,ss
00
r;sY1), exp(a0 � s 0r,ss

0
rY1, s),

exp(b �Cr,s), and their products, form a 2n � l-dimensional representation of the
group of rotations in 2n � l dimensions. Thus, the matrix V itself is the representative
of some such rotations.

We start with a set of 2n � l quantities !k:

�2r�1 � C� C� � � � � s� 1� 1� � � � � Pr,

�2r � �C� C� � � � � isC� 1� 1� � � � � Qr, 1 � r � nl, ð13Þ

where n � l factors appear in each product; s or isC appears in the rth place. The !k

are 2n � l-dimensional matrices, which obey the commutation rules

�2
k ¼ 1,�k�l ¼ ��l�k, ð1 � k, l, � 2n � lÞ: ð14Þ

All possible product of the �k form a set of 22n � l matrices, so that any
2n � l-dimensional matrix can be written as a linear combination of these base
matrices. Following the work of Kaufman [17], the matrices V1, V2 and V3 can be
represented in terms of the base matrices as:

V3 ¼
Yn
r¼1

Yl�1
s¼1

expf�iK 00Pr,sþ1Qr,sg � expfiK
00Pr,1Qr,lU

00
r g; ð15aÞ

V2 ¼
Yl
s¼1

Yn�1
r¼1

expf�iK 0Prþ1, sQr,sg � expfiK
0P1, sQn, sU

0
sg; ð15bÞ

V1 ¼
Yl
s¼1

Yn
r¼1

expfiK � � Pr,sQr,sg: ð15cÞ

since

Cr,s ¼ iPr,sQr,s ¼ 1� 1� � � � � C� 1� � � � , ð16aÞ

s 0r,s ¼ C1, sC2, s . . .Cr�1, sPr,s ¼ 1� 1� � � � � s� 1� � � � , ð16bÞ

s 00r,s ¼ Cr,1Cr,2 . . .Cr,s�1Pr,s ¼ 1� 1� � � � � isC� 1� � � � : ð16cÞ

The end factors in equations (15a) and (15b) differ from others, which originate from
the boundary conditions. As mentioned above, it is clear from these boundary
conditions that in the 3D Ising model, many of the bonds are nonplanar and that
these bonds cross over those in other planes.

We have [17]: if the set !k is a matrix realization of the commutation rules
of (14), all the sets S!kS

�1 will be also realizations of (14). If both sets of matrices,
!k and !�k, obey the commutation rules of (14), a transformation S can be found,
such that !�k¼S!kS

�1. The immediate consequences are: two relations between
two sets of matrices, !k and !

�
k, both obeying the commutation rules of (14), can be

referred as a rotation in 2n � l space and its spin representation in 2n � l space of the
rotation in 2n � l space. If there is a rotation in 2n � l space, one can always find a spin
representation in 2n � l space for the rotation in 2n � l space.

5316 Z.-D. Zhang
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Compared with the 2D Ising model, our 3D model is much more complex,
topologically, i.e. the knots of interactions between the sites. In what follows,
we shall introduce a novel transformation to remove the crossover of the
nonplanar bonds to overcome the topologic difficulty of the 3D Ising model,
which is the key to solving this problem. We need to find a transformation
representing rotations, which must remove simultaneously the crossings of
connections for the interactions J0 and J00 between neighbours in the lattice,
while rearranging elements in matrix V. It is necessary to introduce a conjecture
as follow:

Conjecture 1: The topologic problem of a 3D Ising system can be solved by
introducing an additional rotation in a four-dimensional (4D) space, since the knots in a
3D space can be opened by a rotation in a 4D space. One can find a spin representation
in 2n � l � o-space for this additional rotation in 2n � l � o-space with o¼ (n � l )1/2.
Meanwhile, the matrices V1, V2 and V3 have to be represented and rearranged, also
in the 2n � l � o-space.

This additional rotation in the 2n � l � o-space appears in V as an additional
matrix V 04:

V 04 ¼
Yn�l�o�1
t¼1

expf�iK 000Ptþ1Qtg � expfiK
000P1Qn�l�oUg: ð17Þ

with:

K 000 ¼
K 0K 00

K
for K 6¼ 0, ð18Þ

considering the symmetry of the system and the topologic problem. The form
of (K0K00/K ) stands for crossings and/or knots in the 3D Ising model. The
introduction of the additional dimension can be treated as a boundary condition to
deal with the topologic problem and the non-local behaviour in the 3D
physical system. This procedure is similar to the introduction of the well-known
Born–Kármán periodic boundary condition for dealing with the energy band of an
infinite crystal with free boundary in solid-state physics. In the thermodynamic
limit (N!1), the periodic boundary condition is equalized mathematically to the
free boundary. In our case, the special boundary condition, introduced with the
additional rotation, is equalized mathematically to the free boundary of the 3D
model in the thermodynamic limit. In mathematics, there are many similar
techniques, such as first to rent something and then to pay it back. The 3D Ising
model has to be considered within a (3þ 1)-dimensional frame owing to the known
topologic problem of the 3D model. The introduction of an additional rotation in
an additional dimension properly considered an important hidden intrinsic property,
i.e. the topologic knots of interacting spins and, thus, the non-local behaviour of the
3D model.

It is important to ensure that K000 is not larger than K0 or K00, since the
additional rotation is performed in a curled-up dimension. It would be unreasonable
if the strength of rotation or interaction in the curled-up dimension were larger
than that in the normal dimensions. This verifies the necessity of taking the
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crystallographic axis with the largest exchange interaction as the standard

axis for initiating the procedure. Namely, the conditions of K�K0 and K�K00

should be valid, as we start our procedure by defining K* by e�2K¼ tanh K*.

Meanwhile, the matrices V1, V2 and V3 could be represented and rearranged also

in the 2n � l � o space as:

V 03 ¼
Yn�l�o�1
t¼1

expf�iK 00Ptþ1Qtg � expfiK
00P1Qn�l�oUg; ð19aÞ

V 02 ¼
Yn�l�o�1
t¼1

expf�iK 0Ptþ1Qtg � expfiK
0P1Qn�l�oUg; ð19bÞ

V 01 ¼
Yn�l�o
t¼1

expfiK � � PtQtg: ð19cÞ

It is clear that the additional rotation in the 2n � l � o-space (i.e. 2(n � l )3/2, owing

to o¼ (n � l)1/2) with the spin representation in the 2n � l � o (i.e.2ðn�l Þ
3=2

)-space, extends

the original rotations in the 2n � l-space with the spin representations in the 2n � l-space

to be those in the 2n � l � o-space with the spin representations in the 2n�l�o-space. The

operators of the 3D Ising lattice generate a very large Lie algebra – so large, in fact,

that it cannot be dealt with in the frame of the spin representations in the 2n�l-space,

but only in the 2n�l�o-space. The three groups of 2n�l� 2n�l matrices Cab, s
0
ab, s

00
ab

(�¼ 1, 2, . . . n; �¼ 1, 2, . . . l ) in equation (8) are extended to be:

Ct ¼ iPtQt ¼ 1� 1� � � � � C� 1� � � � , ð20aÞ

s 0t ¼ C1C2 . . .Ct�1Pt ¼ 1� 1� � � � � s� 1� � � � , ð20bÞ

s 00t ¼ C1C2 . . .Ct�1Pt ¼ 1� 1� � � � � isC� 1� � � � : ð20cÞ

Here C, s and isC are located on the position of the �th factor (�¼ 1, 2, . . . , n � l � o) of

the 2n�l�o� 2n�l�o (i.e. 2ðn�lÞ
3=2

� 2ðn�lÞ
3=2

due to o¼ (n � l)1/2) spin matrices. By doing so, we

have performed the transformations of n! n3/2 and i! i3/2 on the lattice.
The problem is to evaluate the eigenvalues of the new matrices

V 0 � V 04 � V
0
3 � V

0
2 � V

0
1. The new matrices V0 are much larger than the original

V matrix, with an additional energy of interaction J000 ¼ (J0J00)/J along an additional

curled-up dimension. It is noticed that, as J000 ! 0 (i.e. one of J0 and J00 approaches

zero), the model turns automatically back to the 2D model. The appearance of V 04 in

the V0 and the extension of the space for the spin representations of V1, V2 and V3

should not change the values for the maximal eigenvalues of matrix V. However,

it over-estimates the total free energy of the system. To compensate for this,

one needs to introduce another new conjecture, Conjecture 2 (as proposed below),

of the weight factors on the eigenvectors. Furthermore, when necessary, one could

perform the transformations of n! n2/3 and l! l2/3 to transform the 2n�l�o� 2n�l�o (i.e.

2ðn�lÞ
3=2

� 2ðn�lÞ
3=2

) spin matrices back to the 2n�l� 2n�l matrices. The addition of this new

matrix V 04 is important in overcoming the difficulty of dealing with the 3D Ising

model, because only its corresponding rotations in a larger dimensional space can

remove the topological problem and take into account the non-local property in the

5318 Z.-D. Zhang
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Hamiltonian. It is understood that matrix V 04 is actually acting as a bridge connecting
the routes to solving the 3D Ising problem. V 04 must vanish if one reduces the
dimension of the system to two, since no such topological difficulty occurs in that
case. However, the detailed action of matrix V 04 would lead to a 3D to 2D crossover
phenomenon. The additional matrix V 04 with K000 is attached directly on matrix V to
arrange it in higher dimensional spaces. The eigenvalues before/after such an
attachment should be equalized, because the 3D Ising model has to be set up within
the (3þ 1)-dimensional framework (as a boundary condition), which could also be
due to the fact that we are actually living in four non-compact dimensions. If either
K, K0 or K00 vanished, the model would immediately return to a 2D model. If two
of K, K0 or K00 vanished, the model would immediately return to the 1D model. In the
next sub-section, we shall try to find the eigenvalues and eigenvectors of the new
matrix V0.

3.2. Eigenvalues and eigenvectors of matrix V0

Following the finding of Kaufman [17], one could treat the last ‘boundary’ factor
and select the eigenvalues in two subspaces similarly. The complete partition
function for the lattice could be written as:

Z ¼ ð2 sinh 2KÞmnl=2
�
X2nl
i¼1

lmi

¼ ð2 sinh 2KÞmnl=2
�
X

exp
m

2
	�2 	 �4 	 � � �ð Þ

h in

þ
X

exp
m

2
	�1 	 �3 	 � � �ð Þ

h io
ð21Þ

For eigenvalues and eigenvectors of the matrix V�, we could have:

V�0 �
Yn�l�o
t¼1

exp
i

2
K �PtQt

� �
�
Yn�l�o
t¼1

exp �iK 0Ptþ1Qtð Þ �
Yn�l�o
t¼1

exp �iK 00Ptþ1Qtð Þ

�
Yn�l�o
t¼1

exp �iK 000Ptþ1Qtð Þ �
Yn�l�o
t¼1

exp
i

2
K �PtQt

� �
� SðR�0 Þ: ð22Þ

The first (and last) product represents the rotation:

coshK � i sinhK �

�i sinhK � coshK �

coshK � i sinhK �

�i sinhK � coshK �

�

�

�

2
666666666664

3
777777777775
: ð23Þ

3D-ordering in Ising magnet 5319
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The middle three products have the same form:

cosh 2Ki �i sinh 2Ki

cosh 2Ki i sinh 2Ki

�i sinh 2Ki cosh 2Ki

cosh 2Ki i sinh 2Ki

�i sinh 2Ki cosh 2Ki

�

�

�

i sinh 2Ki cosh 2Ki

2
6666666666666666666666664

3
7777777777777777777777775

,

ð24Þ

but with different quantities Ki (i¼ 1, 2, 3, for K0, K00 and K000). Compared with those

in Kaufman’s procedure [17], the only differences in our procedure are the

appearances of two additional middle products with K00 (due to the third dimension)

and K000 (due to the introduction of the fourth curled-up dimension). However,

the dimension of each matrix in the present case becomes 2n � l � o, instead of 2n in the

2D case.
R�0 could be written schematically as:

R�0 ¼

a b 0 0 � � � 0 0 b�

b� a b 0 0 � � 0 0 0

0 b� a b 0 � � � � �

� � � � � � � � � �

b 0 � � � � � 0 b� a

2
66666666664

3
77777777775
, ð25Þ

where

a ¼
cosh 2 K 0 þ K 00 þ K 000ð Þ � cosh 2K � �i cosh 2 K 0 þ K 00 þ K 000ð Þ � sinh 2K �

i cosh 2 K 0 þ K 00 þ K 000ð Þ � sinh 2K � cosh 2 K 0 þ K 00 þ K 000ð Þ � cosh 2K �

 !

ð26aÞ

b ¼

�
1

2
sinh 2 K 0 þ K 00 þ K 000ð Þ � sinh 2K � i sinh 2 K 0 þ K 00 þ K 000ð Þ � sinh2 K �

�i sinh 2 K 0 þ K 00 þ K 000ð Þ � cosh2 K � �
1

2
sinh 2 K 0 þ K 00 þ K 000ð Þ � sinh 2K �

0
BB@

1
CCA,
ð26bÞ
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b� ¼
�
1

2
sinh 2 K 0 þ K 00 þ K 000ð Þ � sinh 2K � i sinh 2 K 0 þ K 00 þ K 000ð Þ � cosh2 K �

�i sinh 2 K 0 þ K 00 þ K 000ð Þ � sinh2 K � �
1

2
sinh 2 K 0 þ K 00 þ K 000ð Þ � sinh 2K �

0
B@

1
CA:

ð26cÞ

The eigenvectors are:

1

ð2n � l � oÞ1=2

"2t �W2t

"4t �W2t

�

�

�

�

"2ðn�l�oÞt �W2t

2
666666666664

3
777777777775

where W2t is an eigenvector of the 2-dimensional matrix �2t. Therefore, the

2n � l � o-eigenvalues of R�0 are the eigenvalues of the n � l � o 2-dimensional matrices:

�2t ¼ aþ "2t � bþ "2ðnlo�1Þt � b� ¼ aþ "2t � bþ "�2t � b�: ð27Þ

where

"2t ¼ wxe
ið�=nÞ þ wye

ið�=lÞ þ wze
ið�=oÞ: ð28aÞ

and

"2ðtx,y,zÞt ¼ wxe
iðtx�=nÞ þ wye

iðty�=lÞ þ wze
iðtz�=oÞ: ð28bÞ

At this step, we need to introduce our second conjecture.

Conjecture 2: The weight factors wx, wy and wz, varying in range of [-1, 1], on the

eigenvectors represent the contribution of eiðtx�=nÞ, eiðty�=lÞand eiðtz�=oÞin the 4D space to

the energy spectrum of the system.

By introducing Conjecture 1, the 3D physical system is embedded in the

(3þ 1)-dimensional space, with the same maximal eigenvalues as those of the original

3D model. By introducing Conjecture 2, the over-estimation of the total free

energy of the (3þ 1)-dimensional model is compensated by the weight factors,

leaving the total free energy unchanged.
The determinant of this matrix is þ1. Its eigenvalues could be written as

exp(	�2t), and �2t could be determined by:

1

2
trace ð�2tÞ ¼

1

2
e�2t þ e��2tð Þ ¼ cosh �2t ¼ cosh �2tx, 2ty, 2tz

¼ cosh 2K � � cosh 2ðK 0 þ K 00 þ K 000Þ

� sinh 2K � � sinh 2ðK 0 þ K 00 þ K 000Þ

� wx cos
2tx�

n

� �
þ wy cos

2ty�

l

� �
þ wz cos

2tz�

o

� �� �
ð29Þ
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Here, t stands for variation of tx, ty and tz. Similar to the 2D Ising case, �2t is
geometrically the third side of a hyperbolic triangle, whose other two sides are

2(K0 þK00 þK000) and 2K*. The angle between the two sides 2(K0 þK00 þK000) and 2K*

is determined by the combinational effects of three angles !2tx ¼ ð2tx�=nÞ,
!2ty ¼ ð2ty�=lÞ and !2tz ¼ ð2tz�=oÞ. This situation is similar to the band structure

of a three-dimensional material, which is determined by three wave-vectors kx, ky
and kz along three crystallographic axes. The effects of the three wave-vectors

together contribute to the band structure of a 3D crystal. In the present case, all three

angles !2tx , !2ty and !2tzcontribute to the angle between the two sides

2(K0 þK00 þK000) and 2K*; however, with different weights wx, wy and wz. For the

2D Ising model, only one angle !2t exists, as constructed by the two-dimensional

coordinates. The analogy of only one angle !2t in the 2D Ising system to the energy

band of a 1D spin chain is clear. For the 3D Ising model, the three angles !2tx ,

!2tyand !2tzexist as constructed by the three-dimensional coordinates and the extra-

dimensional coordinate. The analogy of the three angles !2tx , !2ty and !2tz in the 3D

Ising system to the energy band of a 3D crystal is realized only by introducing the

extra-dimensional coordinate. Note that the unit of the dimensions changes due to

the introduction of the extra-dimensional coordinate. The effects of eiðtx�=lÞ,

eiðty�=lÞand eiðtz�=oÞ with their weights wx, wy and wz will be discussed in details

in Appendices A and B.
Introducing the angle �02t between 2K* and �2t simplifies the matrix a2t. Since the

procedure is similar to the 2D Ising case, we quote other relations:

sinh �2t � cos �
0
2t ¼ sinh 2K � � cosh 2 K 0 þ K 00 þ K 000ð Þ

� cosh 2K � � sinh 2 K 0 þ K 00 þ K 000ð Þ

� wx cos!2tx þ wy cos!2ty þ wz cos!2tz

� 	
ð30Þ

sinh �2t � sin �
0
2t ¼ sinh 2ð K 0 þ K 00 þ K 000ð ÞÞ

� wx sin!2tx þ wy sin!2ty þ wz sin!2tz

� 	
: ð31Þ

Therefore, the matrix a2t could be reduced to:

�2t ¼ cosh �2t �
1 0

0 1

 !
þ sinh �2t �

0 sin �02t � i cos �02t

sin �02t þ i cos �02t 0

 !

¼ cosh �2t � i sinh �2t �
0 ei�

0
2t

�e�i�
0
2t 0

 !
: ð32Þ

The normalized eigenvectors of a2t are:

1ffiffiffi
2
p

e
i
2�
0
2t

ie�
i
2�
0
2t

0
@

1
A, 1ffiffiffi

2
p

ie
i
2�
0
2t

e�
i
2�
0
2t

0
@

1
A,
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corresponding to the eigenvalues exp(�2t), exp(��2t), respectively. The 2n � l � o-

normalized eigenvectors of R�0 would behave as:

u2t �
1

ð2n � l � oÞ1=2

wxe
i!2tx þ wye

i!2ty þ wze
i!2tz

� 	
� e

i
2�
0
2t

i wxe
i!2tx þ wye

i!2ty þ wze
i!2tz

� 	
� e�

i
2�
0
2t

wxe
i!4tx þ wye

i!2ty þ wze
i!2tz

� 	
� e

i
2�
0
2t

i wxe
i!4tx þ wye

i!2ty þ wze
i!2tz

� 	
� e�

i
2�
0
2t

�

�

�

i wxe
i!2ntx þ wye

i!2lty þ wze
i!2otz

� 	
� e�

i
2�
0
2t

2
66666666666666666664

3
77777777777777777775

, ð33aÞ

and

v2t �
1

ð2n � l � oÞ1=2

i wxe
i!2tx þ wye

i!2ty þ wze
i!2tz

� 	
� e

i
2�
0
2t

wxe
i!2tx þ wye

i!2ty þ wze
i!2tz

� 	
� e�

i
2�
0
2t

i wxe
i!4tx þ wye

i!2ty þ wze
i!2tz

� 	
� e

i
2�
0
2t

wxe
i!4tx þ wye

i!2ty þ wze
i!2tz

� 	
� e�

i
2�
0
2t

�

�

�

wxe
i!2ntx þ wye

i!2lty þ wze
i!2otz

� 	
� e�

i
2�
0
2t

2
6666666666666666664

3
7777777777777777775

: ð33bÞ

The formation of the 2n � l � o-normalized eigenvectors above, is in a sense

analogous to the construction of a quaternion. As all physicists know, a complex

number of the form z¼ xþ yi, where i ¼
ffiffiffiffiffiffiffi
�1
p

, can be represented by the point (x, y)

on a Cartesian plane. Conversely, any point on the plane can be represented by a

complex number. A quaternion is a 4D complex number in the form of

q¼wþ xiþ yjþ zk, where i, j and k are all different square roots of �1.

The quaternion can be regarded as an object composed of a scalar part, a real

number w and a 3D vector part, xiþ yjþ zk. For the procedure of solving the Ising

models, as shown in section 2 for example, wrapping our crystal on a cylinder greatly

simplifies the calculations. In the 2D Ising case [17], this process led to eigenvectors

in the form of a 1D vector, as the wrapped dimension was treated as the form of a

scalar. In the 3D Ising case, as shown in equations (5) and (6), wrapping our crystal

on a cylinder again treats one of the three original dimensions as the form of a scalar,

which does not contribute to the eigenvectors. Only when the additional fourth

curled-up dimension is introduced and taken into account, can the eigenvectors in

the form of a 3D vector be constructed successfully.
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Similar to Kaufman [17], let the matrix of these eigenvectors be denoted by

t¼ t1 � t2 � t3, so that

t � R� � t�1 ¼ l�1, ð34Þ

where l� is the diagonal form of R�0 . Neither l� nor t are orthogonal, which

cannot be represented in the spin space. Thus, one needs to apply the transformation

I to both sides of (34):

ðItÞ � R� � t�1I�1
� 	

� T1 � R� � T�1 ¼ I � l�1 � I�1 � K: ð35Þ

where I is chosen as it brings l� into its canonical form and makes T¼ I � t

orthogonal.
The spin representative of the canonical form K could be given by:

SðKÞ ¼
Yn�l�o
t¼1

S Ktð Þ ¼
Yn�l�o
t¼1

exp
�t
2
� �t1�t2

� �
, ð36Þ

Since S(T) is a complicated matrix, we do not know the spin representative

of T explicitly. However, we must ensure that T is orthogonal and does possess a spin

representative. The transformation T could be given by:
T:

Pa,b,c!
Xn
tx¼1

Xl
ty¼1

Xo
tz¼1

txa,tyb,tzcPtx,ty,tz þ
Xn
tx¼1

Xl
ty¼1

Xo
tz¼1

�txa,tyb,tzcQtx,ty,tz , ð37Þ

Qa,b,c!
Xn
tx¼1

Xl
ty¼1

Xo
tz¼1

0txa,tyb,tzcPtx,ty,tz þ
Xn
tx¼1

Xl
ty¼1

Xo
tz¼1

�0txa,tyb,tzcQtx,ty,tz , ð38Þ

where

txa,tyb,tzc ¼
1

ðnloÞ1=2
wx cos

2txa�

n
þ
�02t
2

� �
þwy cos

2tyb�

l
þ
�02t
2

� �
þwz cos

2tzc�

o
þ
�02t
2

� �� �
ð39aÞ

�txa,tyb,tzc ¼
�1

ðnloÞ1=2
� wx sin

2txa�

n
þ
�02t
2

� �
þwy sin

2tyb�

l
þ
�02t
2

� �
þwz sin

2tzc�

o
þ
�02t
2

� �� �
ð39bÞ

0txa,tyb,tzc ¼
1

ðnloÞ1=2
� wx sin

2txa�

n
�
�02t
2

� �
þwy sin

2tyb�

l
�
�02t
2

� �
þwz sin

2tzc�

o
�
�02t
2

� �� �
ð39cÞ

�0txa,tyb,tzc¼
�1

ðnloÞ1=2
� wx cos

2txa�

n
�
�02t
2

� �
þwy cos

2tyb�

l
�
�02t
2

� �
þwz cos

2tzc�

o
�
�02t
2

� �� �
ð39dÞ

5324 Z.-D. Zhang



D
ow

nl
oa

de
d 

B
y:

 [Z
ha

ng
, Z

-D
] A

t: 
00

:3
4 

31
 O

ct
ob

er
 2

00
7 

T is now orthogonal and possesses a spin representative, so that the equation:

T � ðR�Þ � T�1 ¼ K, ð40Þ

yields:

SðTÞ � V�0
� 	

� SðTÞ�1 ¼ SðKÞ ¼
Yn�l�o
t¼1

exp
i

2
�tPtQt

� �
: ð41Þ

But S(K) is still not diagonal, because our coordinate system iPtQt¼Ct. To

diagonalize S(K), we use the transformation

g ¼ 2nlo=2 � ðCþ sÞ � ðCþ sÞ � � � � � ðCþ sÞ ¼ g�1, ð42Þ

gCtg ¼ st, ð43Þ

which is not the spin representative of any rotation. Then, we find:

g � SðTÞ � V�0
� 	

� SðTÞ�1 � g ¼ g � SðKÞ � g ¼ ��: ð44Þ

Furthermore, we have:

V0 ¼ V�1=2 � V� � V1=2 � SðHÞ � ðV�Þ � SðHÞ�1: ð45Þ

Therefore,

g � SðTHÞ � ðV�Þ � SðTHÞ�1 � g � �� � ðV
�Þ ���1� ¼ ��, ð46Þ

with

�� ¼ g � SðTHÞ: ð47Þ

Here, H stands for the rotation represented by V
�1=2
1 , i.e. the reciprocal of the

rotation in (23):
H:

Pt ! coshK � � Pt � i sinhK � �Qt, ð48aÞ

Qt ! i sinhK � � Pt þ coshK � �Qt: ð48bÞ

Again, similar to the 2D case [17], it is not feasible to write down explicitly the

components of )� due to the complexity of S(T). On the other hand, one could

easily evaluate the eigenvalues and eigenvectors of Vþ¼ S(Rþ) [17].
The partition function of simple orthorhombic lattices could be expressed as

N�1 lnZ ¼ ln 2þ
1

2ð2�Þ4

Z �

��

Z �

��

Z �

��

Z �

��

ln cosh 2K½ cosh 2 K 0 þ K 00 þ K 000ð Þ

� sinh 2K cos!0 � sinh 2 K 0 þ K 00 þ K 000ð Þðwx cos!x

þ wy cos!y þ wz cos!zÞ


d!0d!xd!yd!z: ð49Þ

In accordance with details of the weights wy and wz, revealed in Appendices A and B,

the putative exact solution for the partition function of 3D simple orthorhombic

3D-ordering in Ising magnet 5325



D
ow

nl
oa

de
d 

B
y:

 [Z
ha

ng
, Z

-D
] A

t: 
00

:3
4 

31
 O

ct
ob

er
 2

00
7 

(and simple cubic) Ising lattices could be fitted to the high temperature series

expansion at/near infinite temperature [80, 93, 107]. Equation (49) contains yet-to-be

determined coefficients, i.e. three weights, which are in the form of a series. However,

as shown in the Appendices, all of the series can be represented or curled inside the

square form, with very regular laws—all high-order terms are regularly negative for

i� 1.
Because wy and wz become zero for finite temperatures, one immediately obtains:

cosh �0 ¼ cosh 2 K � � K 0 � K 00 � K 000ð Þ, ð50Þ

from which the critical point is determined by �0¼ 0, i.e.

K � ¼ K 0 þ K 00 þ K 000: ð51Þ

Namely, from equation (18), one has:

KK � ¼ KK 0 þ KK 00 þ K 0K 00: ð52Þ

The following relations could also derive the critical point of the simple

orthorhombic lattice Ising system:

sinh 2K � sinh 2ðK 0 þ K 00 þ K 000Þ ¼ 1: ð53Þ

or

tanh�1 e�2K ¼ K 0 þ K 00 þ K 000: ð54Þ

These formulae would be the same as those of 2D rectangular Ising lattices if either

K0 or K00 equalled zero, the 1D Ising model if both K0 and K00 equalled zero, or the

simple cubic Ising model if K¼K0 ¼K00.
The partition function (49) directly yields the free energy F of the crystal,

from which the internal energy U and the specific heat C are derived by

differentiation with regard to the temperature T. For a crystal of N atoms,

we have the expressions:

F ¼ U� TS ¼ �NkBT log l,

U ¼ F� T
dF

dT
¼ NkBT

2 dðlog lÞ
dT

,

C ¼
dU

dT
:

ð55Þ

For the present 3D system, it is convenient to evaluate the internal energy U and

the specific heat C by adopting notations K¼ J/kBT and ~K¼ (J0 þ J00 þ J0J00/J)/kBT:

U ¼ �NJ
@ log l
@K
�N J 0 þ J 00 þ

J 0J 00

J

� �
@ log l

@ ~K
¼ NkBT H

@ log l
@K
þ ~K

@ log l

@ ~K

� �
, ð56Þ

C ¼ NkB K2 @
2 log l
@K2

þ 2K ~K
@2 log l

@K@ ~K
þ ~K2 @

2 log l

@ ~K2

� �
: ð57Þ

The discussion of Onsager [13] for the energy and the specific heat of

the rectangular Ising lattice could be easily extended to simple orthorhombic
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Ising lattices. However, in the present case, two terms of (56) are not separated since

both K and ~K are related to J. Nevertheless, we could discuss the problem using
~K¼ (J0 þ J00 þ J0J00/J)/kBT in the 3D instead of K0 ¼ J0/kBT in the 2D. The following

formulae could be derived:

dK �

dK
¼ � sinh 2K � ¼ �

1

sinh 2ðK 0 þ K 00 þ K 000Þ
, ð58Þ

@�

@ ~K
¼ 2 cos � �,

@�

@K �
¼ 2 cos �0,

@2�

@ ~K2
¼ 4 sin2 � � coth �,

@2�

@K �2
¼ 4 sin2 �0 coth �,

@2�

@ ~K@K �
¼ �

4 sin � � sin �0

sinh �
:

ð59Þ

We would have:

@ log l

@ ~K
¼

Z �

0

cos � �
d!

�
,

@ log l
@K
¼ cosh 2K � � sinh 2K �

Z �

0

cos �0
d!

�
,

ð60Þ

and

@2 log l

@ ~K2
¼

2

�

Z �

0

sin2 � � coth �d!,

@2 log l

@K@ ~K
¼ 2 sinh 2K �

Z �

0

sin � � sin �0

� sinh �
d!,

@2 log l
@K2

¼ 2 sinh2 2K � �1þ coth 2K �
Z �

0

cos �0
d!

�
þ

Z �

0

sin2 �0 coth �
d!

�

� �
:

ð61Þ

The integrals (60) are continuous functions of ~K and K (or K*) for all values of

these parameters, even for ~K¼K* (critical point), whereas the three integrals (61) are

infinite at the critical point, otherwise finite. Figure 1 shows the temperature

dependence of the specific heat C for 3D simple orthorhombic Ising lattices with

K0 ¼K00 ¼K, 0.5K, 0.1K and 0.0001K. The critical point decreases with decreasing K0

and K00, until the singularity disappears, as no ordering occurs in the 1D system.

Clearly, if the conjectures were valid, the analytic nature of the singularity of the

specific heat for 3D simple orthorhombic Ising lattices would be the same as 2D Ising

lattices [13].
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For a simple cubic Ising lattice, K0 ¼K00 ¼K, resulting in K000 ¼K. The eigenvalues

of the matrix V could be represented as:

cosh �2t ¼ cosh 2K � � cosh 6K� sinh 2K � � sinh 6K

� wx cos
2tx�

n

� �
þ wy cos

2ty�

l

� �
þ wz cos

2tx�

o

� �

¼ cosh 2K � � cosh 6K� sinh 2K � � sinh 6K � wx cos!2tx

�
þ wy cos!2ty þ wz cos!2tz

	
, ð62Þ

and we would have:

sinh �2t cos �
0

2t
¼ sinh 2K � cosh 6K� cosh 2K � sinh 6K wx cos!2tx

�
þ wy cos!2ty þ wz cos!2tz

	
ð63Þ

sinh �2t sin �
0
2t ¼ sinh 6K wx sin!2tx þ wy sin!2ty

�
þ wz sin!2tz

	
: ð64Þ

Figure 2 gives the ��K plots for different values of !2tx ¼�, 3�/4, �/2, �/4 and 0,

neglecting the effects of !2ty and!2tz . The minimum of the ��K curve shifts toward

small K range (i.e. high temperature range). The minimum of the ��K curve for

!2tx ¼� is located at xd ¼ e�2Kd ¼ ðð
ffiffiffiffiffi
10
p
� 1Þ=3Þ ¼ 0:72075922 . . . . . ..

However, the behaviour of �0 for !2tx ¼ 0 dominates most sensitively the

behaviour of the physical quantities at the critical point Kc of the phase transition,

where �0¼ 0. For finite temperatures, it is easy to reduce equation (62) to the

following expression:

cosh �0 ¼ cosh 2ðK � � 3KÞ, ð65Þ

Figure 1. Temperature dependence of the specific heat C for the 3D simple orthorhombic
Ising lattices with K0 ¼K00 ¼K, 0.5K, 0.1K and 0.0001K (from right to left).
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from which we could determine the critical point xc ¼ e�2Kc ¼ ðð
ffiffiffi
5
p
� 1Þ=2Þ¼

0.61803398874989484820458683436563811 . . . by �0¼ 0, i.e. K*¼ 3K. The following

formulae also hold for the critical point:

sinh 2Kc ¼
1

2
, ð66Þ

cosh 2Kc ¼

ffiffiffi
5
p

2
, ð67Þ

Kc ¼ 0:24060591 . . . ð68Þ

1

Kc
¼ 4:15617384 . . . ð69Þ

The putative critical point of the 3D simple cubic Ising system is located at

xc ¼ e�2Kc ¼ ðð
ffiffiffi
5
p
� 1Þ=2Þ, one of the golden solutions of equation x2þx�1¼ 0.

One could compare it with the critical point of the 2D square Ising system, which is

located at xc ¼ e�2Kc ¼
ffiffiffi
2
p
� 1, one of the silver solutions of the equation

x2þ 2x�1¼ 0. One could also compare it with the formulae of sinh 2Kc¼ 1

and cosh 2Kc ¼
ffiffiffi
2
p

for the critical point of the 2D square Ising system. The similarity

between the exact solution for the critical points of the simple cubic and square

Ising lattices is seen more clearly when the golden and silver solutions are expressed

as the following continued fractions:ffiffiffi
5
p
� 1

2
¼

1

1þ
1

1þ
1

1þ
1

1þ � � �

, ð70aÞ

Figure 2. Plots of ��K of the simple cubic Ising lattice for different values of !2tx
¼�, 3�/4,

�/2, �/4 and 0 (from top to bottom), neglecting the effects of !2ty
and !2tz

.
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ffiffiffi
5
p
þ 1

2
¼ 1þ

1

1þ
1

1þ
1

1þ
1

1þ � � �

, ð70bÞ

ffiffiffi
2
p
� 1 ¼

1

2þ
1

2þ
1

2þ
1

2þ � � �

, ð70cÞ

ffiffiffi
2
p
þ 1 ¼ 2þ

1

2þ
1

2þ
1

2þ
1

2þ � � �

: ð70dÞ

In addition, the golden and silver solutions can also be expressed in the infinite

series of square roots:

ffiffiffi
5
p
	 1

2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 � � �
p

qrsvuut
, ð71aÞ

ffiffiffi
2
p
	 1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 � � �
p

qrsvuut
, ð71bÞ

Equations (70) and (71) could be related to the conceptions of self-similarity and

fractals.
The putative critical point of the simple cubic Ising system could be derived by

the following relations:

sinh 2Kc � sinh 6Kc ¼ 1: ð72Þ

or

tanh�1 e�2Kc
� 	

¼ 3Kc: ð73Þ

Note that these formulae are the same as those for the 2D asymmetric Ising

lattice with K0 ¼ 3K. Although the solution of the golden ratio also exists in this 2D

Ising system, it can be eliminated by setting the larger value between K and K0 as the

starting standard axis (as discussed in section 8).
The partition function of the simple cubic Ising model reads as

N�1 lnZ ¼ ln 2þ
1

2ð2�Þ4

Z �

��

Z �

��

Z �

��

Z �

��

ln cosh 2K½ cosh 6K

� sinh 2K cos!0 � sinh 6K wx cos!x þ wy cos!y

�
þwz cos!zÞ
d!

0d!xd!yd!z ð74Þ
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Again, as revealed in Appendix A, at/near infinite temperature, the partition
function (74) of 3D simple cubic Ising lattices equals the high-temperature series
expansion [80, 93, 107]. This is actually a closed-form solution, as long as Ansatz 1 in
Appendix A is true. This Ansatz is an uncertain section of the whole approach,
but from the regular tendency of parameters b1�b10, it should be true for all of
high-order terms bi (i411). It is believed that the Ansatz is true, although it has not
been proved rigorously.

3.3. Critical point

It is important to compare the putative exact solution for the critical point with the
results of previous approximation methods. We shall first compare it with the data
obtained over the last six decades and then with those obtained most recently. It is
understood that the exact value for 1/Kc should be lower than the values obtained by
various approximation methods. The mean field theory yields 1/Kc¼ z (where z is the
coordination number), which is correct only for d� 4 [212, 226, 227]. For the 3D
Ising model, the mean field value of 1/Kc¼ 6 is the highest approximation value,
which is not quantitatively correct, since the mean field theory overestimates the
critical point in every case of d54. Oguchi [62–64] concluded that the existence of
the Curie point for the 3D ferromagnet is in the range 0.215Kc50.24,
correspondingly, 4.761941/Kc44.16667. Our putative exact solution
Kc¼ 0.24060591 . . . (i.e. 1/Kc¼ 4.15617384 . . .) is exactly located at the upper
border of Kc (or the lower border of 1/Kc) of Oguchi’s estimation [62–64],
within an error of �0.25%. A comparison with the lower border of 1/Kc is
meaningful, since the upper border of 1/Kc should be far from the true value and
only the lower border of 1/Kc could be close to the exact value. The value of Kc

for the Bethe [74, 228] first approximation is equal to 0.202 (i.e. 1/Kc¼ 4.939).
The putative exact solution for 1/Kc is much smaller than that of Bethe’s first
approximation [74, 228]. The putative exact solution is also lower than Kikuchi’s
estimation 4.22215�c54.6097 and �t� 4.5810 (where �c or �t is our 1/Kc) [61].
Actually, this solution is very close to the low limit of 1/Kc of Kikuchi’s estimation
[61], within an error of 1.6%. Meanwhile, the solution xc ¼ e�2Kc ¼ ð

ffiffiffi
5
p
� 1Þ=2 ¼

0:618033988 . . . is much lower than the values obtained by various approximation
methods, such as Wakefield’s method at 0.641 (i.e. 1/Kc¼ 4.497) [73, 74], Bethe’s first
approximation at 0.667 (i.e. 1/Kc¼ 4.939) [74, 228], Bethe’s second approximation
at 0.656 (i.e. 1/Kc¼ 4.744) [74, 228], Kirkwood’s method at 0.658 (i.e. 1/Kc¼ 4.778)
[74, 229] and Burley’s best known value of 0.642 (i.e. 1/Kc¼ 4.513) [209]. Methods
with higher order approximations have lower values for the critical temperature and
the exact solution must have the lowest value. On the other hand, the corrections
of higher order terms are much lower than those of lower order terms, especially
the first leading term. The mean field theory can be treated as a zero-order
approximation. The correction of Bethe’s first approximation on the mean
field value is evaluated by �1ð1=KcÞ ¼ 1=KMF

c � 1=KBethe�1
c , which is �1.061.

The correction of Bethe’s second approximation on Bethe’s first approximation
value is evaluated by �2ð1=KcÞ ¼ 1=KBethe�1

c � 1=KBethe�2
c , which is �0.195. The value

of �2(1/Kc) is �18.38% of �1(1/Kc). It is reasonable that this tendency is
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approximately held by all high-order terms, namely, all of �iþ1(1/Kc) is about one
order less than �i(1/Kc). Suppose the ratios between every neighbouring terms in the
Bethe’s approximations are similar, we obtain the value of 1/Kc¼ 4.700 for the upper
limit of the critical point of the 3D simple cubic Ising model. However, the ratios
may not be the same, but vary over a certain range. The evaluation of the lower limit
gives us a criterion that the exact solution 1/Kc for the critical point of the 3D simple
cubic Ising model must not be smaller than 3.878 (¼ 6 – 2 �1(1/Kc)), because the sum
of all the high-order terms of the corrections must not be larger than the first
correction, i.e.

P1
i¼2 �ið1=KcÞ < �1ð1=KcÞ.

In 1985, Rosengren [230] conjectured that the critical point of the symmetric,
simple cubic Ising model is given by vc � tanhðJ=kBTcÞ ¼

ffiffiffi
5
p
� 2

� 	
cosð�=8Þ ¼

0:218098372 . . . , i.e. Kc¼ 0.22165863 . . . , in consideration of a certain circumstance
for the 2D case and possible generalizations of the combinatorial solution to three
dimensions. One could easily check from xc ¼ e�2Kc ¼ ð

ffiffiffi
5
p
� 1Þ=2 that our putative

solution gives vc � tanhKc ¼
ffiffiffi
5
p
� 2. Surprisingly, what we obtained for the critical

point of the simple cubic Ising model is exactly the same as the first factor
ffiffiffi
5
p
� 2

� 	
in

Rosengren’s conjecture [230]. As noted by Fisher [231], it is fair to say that the basis
for the Rosengren guess remains somewhat obscure: Rosengren did sketch an
argument suggesting that a relevant class of weighted lattice walks with no backsteps
would yield a factor

ffiffiffi
5
p
� 2

� 	
; but the second factor in the Rosengren conjecture was

then selected to match various critical point estimates based on series, renormaliza-
tion group and Monte Carlo studies published in 1981–1984 [120, 121, 173, 232–234].
The factor cos(�/8) introduced confusion, which certainly misled Fisher’s efforts on
the critical polynomial, claiming finally that the critical points of true 3D models
may not be the root of any polynomial [231]. Although the Rosengren conjecture of
Kc¼ 0.22165863 . . . is still in good agreement with the most recent estimates of the
high-temperature series extrapolation [113, 116, 118, 121, 122, 213], Monte Carlo
and renormalization group techniques [161–163, 168, 170, 172–175, 177, 180, 181,
186, 213, 235], there are strong theoretical arguments again it as the exact solution
[231]. This implies that the most recent estimates of the Monte Carlo and
renormalization group techniques are not close to the exact value, although they
have been determined with high precision.

Various new approximation methods have been developed for studying critical
phenomena in different systems [106, 107, 141–144, 149, 152–160, 192–202, 208–225]
since the discovery of the renormalization group theory in 1971. Over recent decades,
further estimates of the critical point and critical exponents have become available
[107–225], many being precise but of doubtful accuracy. Two review articles by
Pelissetto and Vicari [154] and Binder and Luijten [213] summarized recent results
from the renormalization group theory and Monte Carlo simulations, respectively,
among other methods. As summarized in table 2 of Binder and Luijten’s review
[213], the critical point [113, 116, 118, 121, 122, 161–163, 168, 170, 172–175, 177, 180,
181, 186, 235] occurs at Kc¼ 0.221655(5), i.e. 1/Kc¼ 4.511505(5) – in good
agreements with the results in various studies [119, 164, 167, 191]. This value of
1/Kc is slightly higher than our solution 1/Kc¼ 4.15617384 . . . , as the approximation
should be. It is well-known that in all the approximation methods, systematic errors
are difficult to assess with confidence [106, 107, 141–144, 149, 152–160, 192–202,
208–225], which might be the origin of such deviations. The reasons for the existences
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of systematic errors in the approximation methods will be discussed in detail in

section 8.
In the following paragraphs, we will compare the results of the critical points of

the renormalization group theory and Monte Carlo simulations with the exact

solutions of the 2D and 3D Ising models and even some possibly existing analytical

solutions.
Before the comparison, it is interesting to examine the mathematical characters

of the exact solutions of the 2D square and the 3D simple cubic Ising models.

The exact solution of the 2D square Ising model is located exactly at xc ¼ e�2Kc ¼ffiffiffi
2
p
� 1, sinh 2Kc¼ 1 and cosh 2Kc ¼

ffiffiffi
2
p

, yielding Kc¼ 0.44068679 . . . , i.e.

1/Kc¼ 2.26918531 . . . . The putative exact solution of the 3D simple cubic Ising

model is located exactly at xc ¼ e�2Kc ¼ ðð
ffiffiffi
5
p
� 1Þ=2Þ ¼ 0:618033988 . . . , sinh

2Kc¼ 1/2 and cosh 2Kc ¼
ffiffiffi
5
p
=2, yielding Kc¼ 0.24060591 . . . , i.e. 1/Kc¼

4.15617384 . . . . We also found that the minimum in the ��K curve for !2tx ¼� is

located at xd ¼ e�2Kc ¼ ð
ffiffiffiffiffi
10
p
� 1Þ=3 ¼ 0:72075922 . . . , sinh 2Kd¼ 1/3 and

cosh 2Kd ¼
ffiffiffiffiffi
10
p

=3, Kd¼ 0.16372507 . . . and 1/Kd¼ 6.10779991 . . . Although the

minimum of the ��K curve for !2tx ¼� does not correspond to the critical point

or any phase transition, nature shows the hidden intrinsic relationship between the

2D square and the 3D simple cubic Ising lattices, as revealed by the values of sinh

2K¼ 1, 1/2 and 1/3. It is also interesting to compare the critical points of the 2D

square and the 3D simple cubic Ising lattices together with that of the 2D triangular

Ising model: for the 2D square lattice, coth Kc¼ 1þ
ffiffiffi
2
p
¼ 2.414213562 . . . ; for the

2D triangular lattice, coth Kc¼ 2þ
ffiffiffi
3
p
¼ 3.732050808 . . . [24–31, 93]; for the simple

cubic lattice, coth Kc¼ 2þ
ffiffiffi
5
p
¼ 4.236067977 . . . . It is worth noting that these

values are simply related to the smallest three, subsequent irregular numbers, again

showing some hidden intrinsic relationships between the three lattices. The value of

coth Kc for each of these three lattices equals one of the two smallest integers plus

one of the smallest three irregular numbers.
The competition between interaction energy and thermal activity is balanced

at the critical temperature. Critical point values could be used for the evaluation of

the contribution of the interactions to the ordering of the systems. For the 1D Ising

model, there is no order, i.e. 1/Kc¼ 0, and the value of 1/Kc per J equals zero for the

existence of one interaction per unit cell. For the 2D square Ising model, the critical

point of 1/Kc¼ 2.26918531 . . . and the existence of two interactions J per unit

cell gives a value of 1/Kc per J equal to 1.13459265 . . . For the 3D simple cubic Ising

model, the critical point of 1/Kc¼ 4.15617384 . . . and the existence of

three interactions J per unit cell results in 1/Kc per J being equal to

1.38539128 . . .For models with their dimensions d� 4, the mean field theory

yields 1/Kc¼ z (where z is the coordination number) [212, 226, 227]. Namely,

the value of 1/Kc per J is equal to 2 for the d� 4 models, in consideration of the

existence of z/2 interactions J per unit cell. It is reasonable that the value of 1/Kc per

J increases monotonously from 0 via 1.13459265 . . . and 1.38539128 . . . to 2 when

the dimension of the Ising models alters from 1 via 2 and 3 to 4 and above. Namely,

the value of 1/Kc per J varies smoothly with dimensionality. This is because the

correlations between spins are strengthened with increasing dimension of the system,

which contribute more action to the ordering of the system.
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The putative exact critical point of 1/Kc¼ 4.15617384 . . . for the 3D simple

cubic Ising model is derived by the introduction of the extra dimension, in

accordance with the topologic problem of three dimensions. One might assume

that the procedure put extra energy in the final result. Now, let us treat the

third interaction of the 3D simple cubic Ising model as for the 2D Ising model. Simply

taking the sum of the two interactions into the expressions of the eigenvalues as well

as the partition function, one derives the values of xc ¼ e�2Kc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð17=27Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð11=27Þ

p
3

q
þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð17=27Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð11=27Þ

p
3

q
� ð1=3Þ ¼ 0:543689012 . . . and Kc¼ 0.30468893 . . . , i.e. 1/Kc¼

3.28203585 . . . by cosh �0¼ cosh 2(K*�2K) or sinh 2K � sinh 4K¼ 1. However, this

value of 1/Kc¼ 3.28203585 . . . is clearly lower than the real value, since it does not

take the topological effects of the three dimensions into account. Actually, this value

is even smaller than the exact solution of the 2D triangular Ising model, which is

located exactly at xc ¼ e�2Kc ¼ 1=
ffiffiffi
3
p
¼ 0:577350269 . . . , i.e. 1/Kc¼3.6409569 . . .

[24–31, 93]. It is known that the 2D triangular Ising model is equalized to the 2D

square Ising model with only one next nearest neighbouring interaction [31, 83, 93].

The critical point of these two models must be lower than the 2D Ising model with

two next nearest neighbouring interactions and the 3D simple cubic Ising model,

because the latter two models have topologic problems with crosses/knots. It is a

criterion that the critical point of the 3D simple cubic Ising model must be much

higher than that of the 2D triangular Ising model. This criterion can be verified by the

following consideration: the mean field theory is not sensitively dependent on the

lattice geometry, which predicts better results in higher dimensions. The mean field

theory predicts the same critical point for the simple cubic lattice in three dimensions

and the triangular lattice in two dimensions, since both have the coordination

number z¼ 6. The difference between the exact and mean field value in the

simple cubic lattice should be smaller than that in the triangular lattice, indicating

clearly that the critical point of the former must be higher than that of the latter.

The solution of 1/Kc¼ 4.15617384 . . .was found to satisfy this criterion for the 3D

simple cubic Ising model. It is thought that the difference between the critical points

of the simple cubic lattice and the triangular lattice can be treated as a pure

contribution of the 3D lattice, which originates not only from the third dimension and

but also the curled-up fourth dimension.
Finally, we would like to compare, in more detail, the putative exact critical

points with the results of the mean field theory. The mean field theory predicts that

the critical point should depend on the geometry of the model only through the

coordination number z, namely, 1/Kc is equal to the coordination number, and it is

non-zero for all z 6¼ 0. The mean field theory gives the correct predictions only for

d� 4 and it overestimates the critical point in every case of d54. Especially,

the mean field theory is obviously wrong for the 1D Ising model because it

predicts 1/Kc¼ 2, in contradiction with the fact that the exact calculation proves no

order exists at finite temperatures. For the 2D square Ising model, the mean field

theory suggests 1/Kc¼ 4, which is much higher than the Onsager exact

solution of 1/Kc¼ 2.26918531 . . . For the 3D simple cubic Ising model, the mean

field theory gives 1/Kc¼ 6, which is also higher than our exact solution of 1/Kc¼

4.15617384 . . . The feature of the mean field theory is that it identifies the order
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parameter of the system and tries to describe it as simply as possible [212]. It assumes

that one only takes account of configurations in which the order parameter is

uniform and, therefore, that every spin, bond, etc. behaves in an average manner,

regardless of its neighbours. This means that it neglects all fluctuations in the order

parameter in which nearby parts of the system, while remaining interrelated, do

something different from the average. In other words, all Fourier components with

q 6¼ 0 are suppressed [236]. This neglect is responsible for the consistent over-

estimation of the critical point in 2D and 3D and the incorrect prediction of the

existence of the order in 1D. It is evident that such neglect is more serious in lower

dimensions, because the correlations more dramatically affect the physical proper-

ties. To compare the effects of this neglect in models of different dimensions, we

define a parameter, �ð1=KcÞ ¼ ððð1=K
MF
c Þ � ð1=K

Exact
c ÞÞ=ð1=KMF

c ÞÞ to evaluate the

difference between the critical points of the mean field theory and the exact solution.

Immediately, we find that �(1/Kc) equals 100,� 43.27,� 30.73 and 0% for 1D, 2D,

3D and 4D, respectively. Clearly, the error due to this neglect decreases

monotonously with increasing dimension of the system. It is relevant that the

mean field theory predicts better results in higher dimensions.
Other factors concerning the critical point are: (a) The critical point predicted

by high-temperature expansions is even higher than the exact value obtained by

introducing an additional dimension, rotation and, thus, energy. (b) The

approximation value obtained by series expansions is usually higher than the exact

value, whereas that obtained by removing one interaction should be lower than

the exact value. If the golden ratio were not for the 3D model (but, say, for a

(3þ 1)-dimensional model), then the value obtained by high-temperature expansions

would correspond to a model with even higher dimensionality, since the higher

dimensionality, the higher critical point. The question is how to construct the

function of the free energy to obtain such high values predicted by high-temperature

expansions? A reasonable situation might be that the golden ratio is exact for the 3D

model, while the value of the critical point obtained by the high-temperature

expansions is inexact, but as high as an approximate should be.
The 3D Ising model has been judged by several criteria: (1) At/near infinite

temperature, the putative exact solution for the partition function of 3D simple

orthorhombic (and simple cubic) Ising lattices equals the high-temperature series

expansion [80, 93, 107]. (2) The formulae for the eigenvalues, eigenvectors, the

partition function and the critical point of 3D simple orthorhombic lattices can

return to those of 2D rectangular Ising lattices if either K0 or K00 vanishes, the 1D

Ising lattice if both K0 and K00 vanish, and the simple cubic Ising lattice if K¼K0 ¼K00.

(3) Our putative exact solution coincides with the first factor of the Rosengren

conjecture for the critical point of the 3D simple cubic Ising model [230], while the

second factor of the Rosengren conjecture certainly has to be omitted [231]. (4)

The putative exact solution of the 3D simple cubic Ising model is lower than the

approximation values obtained by various series expansion methods, such as

Kikuchi’s estimation (note: the exact solution is very close to the low limit of

Kikuchi’s estimation, within an error of 1.6%) [61], Wakefield’s method [73, 74],

Bethe’s first and second approximations [74, 228], Kirkwood’s method [74, 229], etc.
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D
ow

nl
oa

de
d 

B
y:

 [Z
ha

ng
, Z

-D
] A

t: 
00

:3
4 

31
 O

ct
ob

er
 2

00
7 

(5) The putative exact solution of the 3D simple cubic Ising model is in

good agreement with the range of 4.1666751/Kc54.7619, as Oguchi estimated,

and is exactly located at the lowest boundary of Oguchi’s estimations within an error

of �0.25% [62–64]. (6) The exact solution for the critical point 1/Kc of the 3D simple
cubic Ising model must be not smaller than 3.878, because the corrections of all terms

of the Bethe high-order approximations on the mean field theory must not be larger

than twice the correction of the Bethe first approximation. (7) The critical point 1/Kc

of the 3D simple cubic Ising model must be higher than that (3.6409569 . . .) of the 2D

triangular Ising model. (8) The putative exact solution is close to and lower than the
value of 1/Kc¼ 4.511505(5) in the Binder and Luijten review [213], which has been

well established from the results of high-temperature series extrapolation, Monte

Carlo renormalization group, Monte Carlo and finite-size scaling in recent years. (9)

The value of 1/Kc per J increases monotonously with increasing dimension of the

Ising model because the correlations between spins are strengthened, contributing
more efficiently to the ordering of the system in higher dimensions. (10) The

parameter, �(1/Kc), as the evaluation of the difference between the exact solution

and the mean field value, decreases monotonously with increasing dimension of the

system, and, as a consequence, the mean field theory predicts better results in higher

dimensions because the errors due to the neglects of fluctuations in the order
parameter become smaller. (11) The exact solutions of the 3D simple cubic and 2D

square Ising models are closely correlated with similar mathematical structures, such

as the golden and the silver ratios as the solutions of the equations x2þ x�1¼ 0 and

x2þ 2x �1¼ 0, the two simplest continued fractions, the critical point formulae of

sinh 2Kc¼ 1/2 and sinh 2Kc¼ 1, etc. (12) The exact solution satisfies the principles of
simple symmetry and beauty with aesthetic appeal, which are the most important

principles for judging the validity and correctness of a theory where the answer is

unknown. The principles of simple symmetry and beauty have been employed widely

for establishing the elegance theories, such as Einstein’s theory of general relativity,

Dirac’s equation, Feynman’s path integrals or Onsager’s solution, etc.

4. Spontaneous magnetization

4.1. Perturbation procedure

The spontaneous magnetization of the square Ising magnet was calculated exactly by

Yang using a perturbation procedure [20]. Chang [21] and Potts [22] derived the

spontaneous magnetization of the rectangular Ising lattice and Potts also dealt
with the triangular Ising lattice. Schultz et al. [237] investigated the two-spin

correlation function in an infinite 2D lattice, in terms of many fermions and

reconciled the different approaches of previous authors, and discussed the

definitions of spontaneous magnetization. Although the definition of spontaneous

magnetization was argued by Schultz et al. [237], in this section, we shall follow
Yang’s method to calculate the spontaneous magnetization of the 3D Ising model,

based on the two conjectures introduced previously. We shall focus on the
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spontaneous magnetization of simple orthorhombic lattices and then on the simple

cubic lattice.
As a weak magnetic field @ is introduced, the partition function of the 3D simple

orthorhombic Ising magnet becomes:

ZK ¼ ð2 sinh 2KÞ
mnl=2trace V5V4V3V2V1ð Þ

m, ð75Þ

where

V5 ¼ exp @
Xn�l
1

st

( )
: ð76Þ

For a large crystal, as discussed above, only the eigenvector of

V¼V5V4V3V2V1 with the largest eigenvalue is important. The limiting form of

this eigenvector as @! 0 is the one of interest. The largest eigenvalue

of V4V3V2V1 is doubly degenerate below the critical temperature. This is also

true of the symmetrical matrix V
1=2
1 V4V3V2V

1=2
1 . Let tþ and t� be the even and

odd eigenvectors corresponding to the largest eigenvalue l. Introducing the

operator

U ¼ C1C2 � � �Cnl, ð77Þ

that reverses the spins of all atoms, we have

U þ ¼  þ, U � ¼ � �, ð78Þ

for the even and odd eigenvectors, respectively.
When the magnetic field @ is applied, the degeneracy is removed. Analogous

to Yang’s consideration [20], we perform a perturbation calculation, since

we are only interested in the limit of @! 0. We consider only the largest

eigenvalue of

V1=2
1 VV�1=21 ¼ V1=2

1 V5V4V3V2V
1=2
1

¼ V1=2
1 V4V3V2V

1=2
1 þ @V

1=2
1

Xnl
1

st

 !
V4V3V2V

1=2
1 : ð79Þ

The last term is a real symmetrical matrix anticommuting with U, which has no

diagonal matrix element with respect to either tþ or t�. Ordinary perturbation

theory shows that as @! 0, the eigenvector of (79) with the largest eigenvalue

approaches

 max ¼
1ffiffiffi
2
p ð þ þ  �Þ, ð80Þ

if the phases of )þ and )� are chosen that they are real and that:

 0þV
1=2
1

Xnl
1

st

 !
V4V3V2V

1=2
1  � � 0: ð81Þ
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From the general definition of the matrix method, the average magnetization per

atom reads as:

I ¼
1

mnl

m � trace V5V4V3V2V1ð Þ
mPnl

1 st
trace V5V4V3V2V1ð Þ

m

¼
1

nl

trace V1=2
1 V5V4V3V2V

1=2
1

� �m
V1=2

1

Pnl
1 stV

�1=2
1

� �
trace V1=2

1 V5V4V3V2V
1=2
1

� �m

¼
1

nl
 0maxV

1=2
1

Xnl
1

stV
�1=2
1  max, ð82Þ

As @! 0, (82) becomes by (80)

I ¼
1

2nl
 0þ þ  

0
�

� 	
V1=2

1

Xnl
1

stV
�1=2
1 ð þ þ  �Þ: ð83Þ

Similar to the discussion in Yang’s study [20], the spontaneous magnetization is

I ¼
1

nl
 0�V

1=2
1

Xnl
1

stV
�1=2
1  þ: ð84Þ

By replacing the summation
P

st, it can be written as:

I ¼  0�V
1=2
1 s1V

1=2
1  þ: ð85aÞ

The relation would be expressed as:

I1=3 ¼ ’0�V
1=2
1 s1V

1=2
1 ’þ: ð85bÞ

where ’0� and ’þ are the reduced normalized eigenvectors in consideration of weights

at finite temperature. The 2n-reduced normalized eigenvectors is represented as:

u2t �
1

ð2nÞ1=2

ei!2tx � eði=2Þ�
0
2t

iei!2tx � eð�i=2Þ�
0
2t

ei!4tx � eði=2Þ�
0
2t

iei!4tx � eð�i=2Þ�
0
2t

�

�

�

iei!2ntx � eð�i=2Þ�
0
2t

2
666666666666666666664

3
777777777777777777775

,
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and

v2t �
1

ð2nÞ1=2

iei!2tx � eði=2Þ�
0
2t

ei!2tx � eð�i=2Þ�
0
2t

iei!4tx � eði=2Þ�
0
2t

ei!4tx � eð�i=2Þ�
0
2t

�

�

�

ei!2ntx � eð�i=2Þ�
0
2t

2
666666666666666666664

3
777777777777777777775

:

The power 1/3 for spontaneous magnetization I comes automatically from the

dimensional unit of the 3D system as one uses the reduced eigenvectors. The physical

significance of I is the same as that defined for the 2D Ising magnet. Following

Yang’s study [20], we introduce an artificial limiting process and reduce the problem

to an eigenvalue problem of an n� n matrix. One arrives after some algebra at:

I1=3 ¼ Lim
a!i1
ð2 cos aÞ�ntraceV1=2

1 s1V
�1=2
1 S T�1þ MT�

� 	
: ð86Þ

The next step is to follow the procedure of subsections B, C, D and E of section II

in Yang’s paper [20].
The procedure for an infinite crystal could be simplified greatly. Considering the

weights wx� 1, wy¼wz¼ 0 for finite temperatures, the relationship between �0 and !
shown in equation (29) could be reduced explicitly, in term of z ¼ ei!x (!x¼ tx�/n,
tx¼ 1, 2, . . . , n), to:

e2i�
0

¼
tanh2 K �ðz� coth K 0 þ K 00 þ K 000ð Þ cothK �Þðz� tanh K 0 þ K 00 þ K 000ð Þ cothK �Þ

ðz� coth K 0 þ K 00 þ K 000ð Þ tanhK �Þðz� tanh K 0 þ K 00 þ K 000ð Þ tanhK �Þ
:

ð87Þ

Then, ei�
0

behaves as

�ðzÞ ¼ ei�
0

¼
1

ðABÞ1=2
ðz� AÞðz� BÞ

z� A�1ð Þ z� B�1ð Þ

� �1=2
, ð88Þ

where

A ¼ coth K 0 þ K 00 þ K 000ð Þ cothK � ¼
1þ x2x3x4

x1 1� x2x3x4ð Þ
, ð89aÞ

B ¼ tanh K 0 þ K 00 þ K 000ð Þ cothK � ¼
1� x2x3x4

x1 1þ x2x3x4ð Þ
, ð89bÞ
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with

x1 ¼ e�2K; x2 ¼ e�2K
0

; x3 ¼ e�2K
00

; x4 ¼ e�2K
000

:

For T5Tc, A4B41. � (z) is analytic everywhere except at the points z¼A, B, 1/A,
or 1/B, where it has branch points. The square root in equation (88) is defined as
that branch of the function taking the value �1 at z¼ 1 [20]. Similar to Yang’s
procedure [20], one has:

F�2 ¼
4

�

1

A� B
k1=2�1K k�1ð Þ, ð90Þ

where

k�1 ¼
A2 � 1
� 	1=2

� B2 � 1
� 	1=2

A B2 � 1ð Þ
1=2
þB A2 � 1ð Þ

1=2

" #2

, ð91Þ

and K(k�1) is the complete elliptic integral of the first kind. It is convenient to change
the modulus:

k ¼
2k1=2�1

1þ k�1
¼

4x1x2x3x4

1� x21
� 	

1� x22x
2
3x

2
4

� 	 ¼ sinh�1 2K sinh�1 2 K 0 þ K 00 þ K 000ð Þ: ð92Þ

Then

F�2 ¼
2kKðkÞ

�ðA� BÞ
: ð93Þ

and

I4=3 ¼
Ynl
2

l2�
4

� �" #
F4A�2B�2 cosh4 K �, ð94Þ

which can be further simplified to

I4=3 ¼
Ynl
2

l2�
4

 !
�2

4

1

KðkÞ

� �2
: ð95Þ

Similar to Chang [21], the elliptic transformation (81) in Yang’s paper [20] is
replaced by:

z ¼ �
ðcnu� i 1þ k1ð Þ

1=2snuÞðdnu� i k1 þ k1k2ð Þ
1=2snuÞ

1þ k1sn2u
, ð96Þ

where the modulus is given by equation (92). It is easy to verify that:

1

z

dz

du
¼ �i

1� k2

1þ k1ð Þ
1=2

1

dnu� k1 1þ k2ð Þ=ð1þ k1Þ½ 

1=2cnu

: ð97Þ

where k1¼ sinh�2 2K and k2¼ sinh�2 2(K0 þK00 þK000). The essential properties of the
variable z as a function of u remain the same as in the 2D lattices. There are still
two singularities per unit cell (4K� 4iK0) (note: only here the denotions K and K0 are
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the same as Yang’s K and K0 in u-plane [20, 21]), although their positions are

changed. Finally, we quote:

Y1
2

l2�
4
¼

4

�2
½KðkÞ
2ð1� k2Þ1=2 ¼

4

�2
K2 1

1� x21
� 	

1� x22x
2
3x

2
4

� 	
� 1� x21 þ 4x1x2x3x4 � x22x

2
3x

2
4 þ x21x

2
2x

2
3x

2
4

� 	
� 1� x21 � 4x1x2x3x4 � x22x

2
3x

2
4 þ x21x

2
2x

2
3x

2
4

� 	
1=2
ð98Þ

Figure 3. Temperature dependence of the spontaneous magnetization I for (a) several simple
orthorhombic lattices with K0 ¼K00 ¼K, 0.5K, 0.1K and 0.0001K (from right to left) and
(b) simple cubic Ising lattice (solid curve) in comparison with that (dashed curve) obtained by
Yang for the square Ising model [20] and the result of the low-temperature series expansion
(the dotted curve with terms up to the 52nd order [111, 238]; the dash/dot curve with terms up
to the 54th order [238] of the simple cubic Ising lattice).
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The spontaneous magnetization I for the simple orthorhombic lattices is
obtained from equations (95) and (98) as:

I ¼

1� x21 þ 4x1x2x3x4 � x22x
2
3x

2
4 þ x21x

2
2x

2
3x

2
4

� 	
� 1� x21 � 4x1x2x3x4 � x22x

2
3x

2
4 þ x21x

2
2x

2
3x

2
4

� 	� �1=2
1� x21
� 	

1� x22x
2
3x

2
4

� 	
8>>><
>>>:

9>>>=
>>>;

3=4

ð99Þ

The temperature dependence of the spontaneous magnetization I for several
simple orthorhombic lattices with K0 ¼K00 ¼K, 0.5K, 0.1K and 0.0001K is
represented in figure 3a. The spontaneous magnetization decreases with increasing
temperature to zero at the critical point. The critical point decreases with decreasing
K0 and K00, until disappearing as K0 ¼K00 ¼ 0 as a 1D system. For a simple cubic
lattice, because x1¼ x2¼ x3¼ x4¼ x, k is reduced to:

k ¼
2k1=2
�1

1þ k�1
¼

4x4

1� x2ð Þ 1� x6ð Þ
¼ sinh�1 2K sinh�1 6K: ð100Þ

Then, the spontaneous magnetization I for the simple cubic lattices could be:

I ¼
1

1� x2ð Þ 1� x6ð Þ
1� x2 þ 4x4 � x6 þ x8
� 	

1� x2 � 4x4 � x6 þ x8
� 	 
1=2� �3=4

:

ð101Þ

or

I ¼ 1�
16x8

1� x2ð Þ
2
1� x6ð Þ

2

" #3=8

: ð102Þ

At low temperatures, this gives the expansion in power of x as:

I ¼ 1� 6x8 � 12x10 � 18x12 � 36x14 � 84x16 � 192x18 � 408x20 � 864x22 � 1970x24

� 4680x26 � 10980x28 � 25480x30 � 59970x32 � 143940x34 � 347730x36

� 838956x38 � 2028870x40 � 7790088x42 . . . ð103Þ

This series is convergent up to the critical point, wherex ¼ xc ¼ ðð
ffiffiffi
5
p
� 1Þ=2Þ.

Near the critical point, I has a branch point:

I ffi
5
ffiffiffi
5
p
ð
ffiffiffi
5
p
þ 1Þ

2

� �
ðxc � xÞ

� �3=8
: ð104Þ

In figure 3b, the spontaneous magnetization I of the simple cubic Ising lattice is
plotted against the temperature, in comparison with the spontaneous magnetization
obtained by Yang for the square Ising model [20], and the result of the series
expansion [111, 238] of the simple cubic Ising model. It is interesting to note that two
golden solutions, ðð

ffiffiffi
5
p
� 1Þ=2Þ and ðð

ffiffiffi
5
p
þ 1Þ=2Þ of the equation x2þ x�1¼ 0 appear

as xc and the constant in the formula for the critical behaviour of the spontaneous
magnetization of the 3D simple cubic Ising model, while two silver solutions of the
equation x2þ 2x�1¼ 0 show up in the Yang’s formula for the 2D square
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Ising model [20]. Being plotted as a function of T/Tc, the different critical behaviour
of the spontaneous magnetization of the 3D and 2D Ising lattices are clearly seen,
which originate from their different powers of 3/8 and 1/8. We believe that the
low-temperature series expansion is not exact and the appearance of a plus sign
is clearly incorrect [59], which is to compensate the incorrectness of the x6 term
(this issue will be discussed in detail in section 8). Nevertheless, the series expansion
of the simple cubic Ising model numerically fits well with the putative exact model,
and oscillates around it, up to T� 0.9Tc, and then deviates from it. The spontaneous
magnetization obtained by the low-temperature series expansion depends sensitively
on how many terms are taken into account. It is seen from figure 3b that the
curve with terms up to the 52nd order (with a positive coefficient) rises above �0.9Tc

[111, 238], while the curve with terms with the 54th order (with a negative
coefficient) as its last term drops monotonously [238]. This indicates clearly that
the low-temperature series diverges. Moreover, the curve with more terms is closer
to the putative exact solution. It is expected that if more terms were taken into
account, the curves of the low-temperature series would numerically fit better with
the putative solution in a broader temperature range (however, the curves of the
low-temperature series are still divergent, depending sensitively on the sign of the last
term). This implies that our putative exact solution might be correct.

4.2. 3D-to-2D crossover phenomenon

It is interesting to see how the exponent �¼ 3/8 for 3D becomes the well-known
�¼ 1/8 for 2D and whether the 3D-to-2D crossover phenomenon is similar to the
2D-to-1D crossover phenomenon. There was no evident indication in Yang’s
formula [20] to show how the �¼ 1/8 disappears when either x1 or x2 equals 1, as it
was not represented directly as a function of x1 and x2. The 2D-to-1D crossover
phenomenon embodied in the expression in the brackets of their formula cannot be
directly understood from the power 1/8 itself. One can understand the 2D-to-1D
crossover phenomenon more easily by Chang’s general formula for a rectangular
lattice [21], compared with a square lattice [20]. As Chang discovered [21], the
exponent 1/8 does not change with varying ratios of the vertical and horizontal
interactions. It is tempting to conclude that the exponent is dependent only on the
dimensionality of the lattice and not on the number of nearest neighbours [21].

For the 3D-to-2D crossover phenomenon, one might expect a similar situation.
From first impressions, as x3¼ x4� 1 (i.e. K00 ¼K000 � 0), the spontaneous magnetiza-
tion (equation (99)) for the simple orthorhombic lattices should automatically return
Onsager’s original 2D Ising model and, hence, the critical exponent � automatically
becomes 1/8. This could be realized, since one does not need the additional rotation
in the 2D limit. However, another mechanism is uncovered on the 3D-to-2D
crossover phenomenon based on the validity of our solution. Namely, there should
be a gradual crossover between the 3D and 2D behaviour when x3¼ x4! 1 as
K00 ¼K000 ! 0. The criterion for illustrating the existence of this crossover is described
as follows: at the same temperature, the spontaneous magnetization of a 3D Ising
system with x3¼ x4 6¼ 1 must always be higher than that of a 2D Ising system with the
same values of x1 and x2 as the 3D Ising system.
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This criterion is not based on a hypothesis, but a fact with physical significances.
The spontaneous magnetization (i.e. the order parameter) of the system depends on
competition between the order energy (controlled by the Hamiltonian) and the
disorder energy (i.e. the thermal activity). How the order parameter decreases with
increasing temperature reveals this competition. To compare the spontaneous
magnetization of different systems at the same temperature involves comparing their
order energy only because at a fixed temperature, the thermal activity is maintained
for these systems. From the Hamiltonian, it is clear that the order energy of a 3D
Ising system with K00 6¼ 0 is always larger than that of a 2D Ising system with the same
values of K and K0, no matter how small the K00 is. In other words, this criterion can
also apply in the regime where one of the coupling interactions of the 3D
ferromagnet approaches zero, namely, when Tc,3D is close to Tc,2D. The 3D Ising
system can be constructed by connecting the l planes of the 2D Ising systems by the
third interaction K00. With the help of the third interaction K00 to defy the thermal
activity, the order parameter of the 3D Ising system is always higher than that of the
2D Ising system at the same temperature. Clearly, this criterion is always true,
whether one or both of the systems are in the critical region.

The exponent �¼ 3/8 gives a curve lower than that of the exponent �¼ 1/8 for
2D if plotting the spontaneous magnetization as a function of T/Tc. When K00 and
K000 are sufficiently large to have a Curie point that keeps the spontaneous
magnetization for 3D always higher than 2D plots, the system behaves as a real 3D
system with �¼ 3/8. Otherwise, the system behaves as a crossover with an exponent �
in the range 1/8 – 3/8, though the small values of K00 and K000 do not yet vanish. The
range of this crossover could be determined numerically to be
from K00 ¼K000 � 0.195K (in case of K¼K0) to zero. One could derive the area of
the 3D-to-2D crossover in the parametric diagram of the whole system (see figure 4).
The dashed curve of (K0/K)þ (K00/K)þ (K0K00/K2)¼ 1 in figure 4 corresponds to the
points with the critical temperature of the silver solution. The 3D-to-2D crossover
phenomenon appears in the area between the dashed and the dash-dot curve of
(K0/K)þ(K00/K)þ (K0K00/K2)� 1.39. All the points with a critical temperature
below the silver solution would have the 2D critical exponent, while all the points
in the area above the dash-dot curve would behave as a real 3D system. It is difficult
to illustrate mathematically in detail how the exponent �¼ 3/8 for 3D changes to be
the well-known �¼ 1/8 for 2D in this crossover.

In the following, the occurrence of this crossover is proved briefly. As shown in
figure 3b, when plotted as a function of T/Tc, the spontaneous magnetization of the
3D Ising model is always lower than that of the 2D Ising model at every normalized
temperature. This is always true, whether we choose the exponent of 3/8 or 5/16
(as high-temperature series expansions suggested). Supposed we have a function
m3D(x1, x2, x3) for the expression in the brackets for the spontaneous magnetization
of the 3D Ising model, and a function m2D(x1, x2) for 2D. From the two functions,
one can determine directly the critical point, without considering how large the
exponent is. With the third interaction value being small enough (say, K00 ! 0þ in
case of K¼K0), the difference between the critical points of the 3D and 2D
Ising models can also be small enough (Tc,3D!Tc,2D

þ). Then, the large difference
between the exponents of the two systems results in most of the spontaneous
magnetization of the 3D Ising model at temperatures below Tc,2D being lower than
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that of the 2D system. The spontaneous magnetization of the 3D Ising model at
temperatures above Tc,2D is higher than that of the 2D system. There is a cross
point between the two curves for the spontaneous magnetization of the two systems.
In principle, this situation must occur, irrespective of the functions m3D and m2D or
whether the exponent � for the 3D Ising model is 3/8 or 5/16. It is unreasonable to
believe that the spontaneous magnetization of the 3D Ising model is smaller than
that of the 2D Ising model, as the existence of the third interaction should increase
the order energy and, hence, enhance the spontaneous magnetization. A rational
mechanism is that the exponent � in this limit is not 3/8 (or 5/16), but slightly larger
than that of the 2D Ising model (i.e. �! (1/8)þ). Similar analysis reveals that as
K00 decreases to less than �0.195K, the exponent � should be slightly less than 3/8
(i.e. �! (3/8)�). This indicates clearly that there is a crossover of exponent � from
the 3D value of 3/8 to the 2D value of 1/8, as K00 decreases to zero. This does not
depend on the detail expression of the solution. This kind of the 3D-to-2D crossover
phenomenon implies that the action of the additional rotation becomes gradually
weaker as K00 decreases to zero. Similar proof can be obtained for the cases with
both K0 and K00 decreasing. One easily derives the condition of (K0/K)þ (K00/K)þ
(K0K00/K2)� 1.39 for the boundary between the areas for real 3D behaviour and the
3D-to-2D crossover. The present work shows that the 3D-to-2D crossover
phenomenon differs with the 2D-to-1D crossover phenomenon. This is because
from 3D to 2D, the crossover is between two different ordering systems, whereas
from 2D to 1D, the crossover is between ordering and disordering systems. Also in
3D to 2D, the crossover is between two systems with and without topologic
problems, respectively, whereas from 2D to 1D, the crossover occurs between
two systems, both without a topologic problem.

It is widely accepted (mainly based on numerical calculations) that the 3D system
always shows 3D critical behaviour, no matter what the relative ratios between the
strengths of interactions along three crystallographic axes. It is known from
numerical results that even with a small enough interlayer interaction, the system
shows 3D critical behaviour for a narrow range near the critical temperature.
This range becomes narrower when the interlayer interaction becomes smaller.
However, to fit the 3D critical exponent well within a narrower range near the critical
temperature means that 3D critical behaviour becomes weaker, while other terms
(such as the subleading order in expansions) of different critical behaviour become
comparatively stronger. If one insisted on fitting the 3D critical exponents as the
interlayer interaction becomes extremely smaller, the critical region would be
extremely narrow (zero or infinitesimal, with no physical meaning). This raises the
problem: how does the 3D system with a very narrow critical region and the 3D
critical exponents suddenly jump to the 2D system with a much wider critical region
and the 2D critical exponents as the infinitesimal interaction K00 vanishes? Such a
sudden jump should not occur, because the 3D system with the infinitesimal
interaction K00 should have 2D-like behaviour. The infinitesimal interaction K00 make
the l planes of the 2D Ising systems almost independent of each other. The 3D
system, in this case, is close to many, separate 2D Ising systems. The critical
behaviour of the 3D system with the infinitesimal interaction K00 should be close to
the 2D critical behaviour. It is emphasized that any numerical results, obtained by
fitting the data points of the calculations, cannot serve as a standard for discussion
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on the present topic, due to the limited accuracy of the numerical calculation (though
it might be highly precise), such as systematic errors originating from approximation
disadvantages and computer power (in dealing with the cooperative phenomena of
infinite spins in the system).

To discuss the situation in detail, one could assume that the 3D magnetization
is of the typical form in the expansion: M3D(T) �A(Tc) jT�Tcj

�
þB(Tc) jT�Tcj

�0
þ

higher order terms (� 6¼ �0). Then, one could argue that, to satisfy the criterion above,
there is no need of a crossover, specifically, by taking into account the next leading
order term in the 3D magnetization expansion close to Tc. �5�0 is not the case here,
since it may correspond to the 3D to 4D crossover. For �4�0 (�� 3/8 (or 5/16) and
�0 ¼ 1/8 for the 3D-to-2D crossover), it could happen, that in the limit Tc,3D to Tc,2D,
the subleading order could take over with a divergent amplitude B, such that
B(Tc) jT – Tcj

�0 to C(Tc) j T – Tcj
1/8. However, the action of the subleading order

depends sensitively on the relative ratio rAB (¼A/B) between amplitudes A and B.
In the limited case of a pure 3D system, the subleading order is negligible since
amplitude A is dominant (rAB!1), whereas in the pure 2D case, the subleading
order takes over as the amplitude B becomes dominant (rAB! 0). Regarding
continuity, there should exist a region in the parametric plane where amplitudes A
and B are comparable (rAB� 1). In this region, the contributions from the leading
and the subleading orders in the expansion above are comparably in the same order
and one cannot neglect the effects of both terms. In this region, the 3D magnetization
expansion above fails to derive a unique critical exponent and the actual critical
exponent of the system is neither � nor �0. The only possibility is to describe the
critical behaviour by D(Tc) jT – Tcj

�00 with �4�004�0 for rAB� 1. Finally, note
that �0 should not be smaller than 1/8; otherwise, it would create another difficulty
in interpreting how the critical behaviour of the system changes from �0 to the 2D
value 1/8.

It is clear that during the 3D-to-2D crossover, as one of the coupling interactions
of the 3D ferromagnet approaches zero (e.g. K3! 0, x3! 1), the difference
between the functions m3D(x1, x2, x3) and m2D(x1, x2) in the brackets of the
expression for the spontaneous magnetization of the 3D and 2D Ising models can
be negligible. On the other hand, if the system still had a 3D critical exponent, the
existence of the large difference between the 3D and 2D critical exponents would
violate the criterion that, at the same temperature, the spontaneous magnetization of
a 3D Ising system with K00 6¼ 0 (i.e. x3 6¼ 1) must always be higher than that of a 2D
Ising system with the same values of x1 and x2. The only possibility to satisfy
this criterion is that the critical exponent of the system approaches the 2D system
during a crossover.

5. Spin correlation function

The spin–spin correlations in the 2D Ising model were studied first by Kaufman
and Onsager [18], then by various authors [239–251]. The combinatorial method
was used by Potts and Ward to calculate the partition function of a finite
rectangular Ising lattice and the correlation functions of an infinite lattice [60, 239].
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The proof necessary to make this solution rigorous was supplied by Sherman

[240, 241] and Burgoyne [242]. Kadanoff [243] phrased the Onsager solution of the

2D Ising model in the language of thermodynamic Green’s functions and discussed

the spin correlation functions for temperatures smaller/greater than the critical

point. The Pfaffians was first introduced by Hurst and Green [244] to derive the

solution of the Ising problem for a rectangular lattice. The number of ways in

which a finite quadratic lattice (with edges or periodic boundary conditions) can be

fully covered with given numbers of ‘horizontal’ and ‘vertical’ dimers

was rigorously calculated by a combinatorial method involving Pfaffians [245].

The Ising problem was shown to be equivalent to a generalized dimer problem

and the Onsager expression for the Ising partition function of a rectangular

lattice graph was derived on the basis of this equivalence [246–248]. As revealed

by Kasteleyn [245, 246] neither the (C) nor (D) theorem in his paper is true if a

nonplanar graph is represented in a plane (with intersecting lines). The

Onsager–Kaufman formulae for the correlations and the Onsager formula for

the spontaneous magnetization of the rectangular 2D Ising lattice were revived by

Montroll et al. [249]. The Pfaffian approach was used to derive the correlation in

terms of Pfaffians and, for the correlations in a row, a single Toepltiz determinant

was obtained, which was proved equivalent to the Onsager–Kaufman result. The

Pfaffian representation of the partition function of the 2D triangular lattice was

also applied to derive the expressions for various two, four, and six spin

correlations in terms of Pfaffians [250]. It is clear that one cannot simply apply the

technique of Pfaffians to deal with the problem of the 3D Ising model. In addition,

the short-range order parameters were evaluated for the triangular and honeycomb

Ising nets in ferro- and antiferromagnetic cases by the method of Kaufman and

Onsager [251].
In this section, we shall investigate the spin correlation function for the 3D

simple orthorhombic Ising lattices, also based on the introduction of the two

conjectures. We first give the general formula for the spin correlation function

of the simple orthorhombic Ising system. Then, we discuss the spin correlation

function separately, in its different features. The initial approach is to follow the

Montroll et al. [249] procedure to evaluate the spin correlation function, which

is related to the spontaneous magnetization in its long-range order. The second

is to follow the Wu [252] procedure to study the short-range order. The third is

to follow the Fisher [247] procedure to discuss the true range of the spin

correlation function, which is related to the correlation length. The fourth is to

extend the discussion of Kaufman and Onsager [18] on the short-range order to

the three-dimensional binary Ising lattice.

5.1. General formula

Each site in the lattice could be indexed by (i, j, k) for its location in the

coordinate system (rows, column, plane). In general, the spin in the jth site in the

ith row of the kth plane, when the crystal is in configuration {�1, �1, . . . �m}, is (sjk)�i�i.
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The average value of this spin is [18]:

s
jk
¼

1

Z

X
�1,�2,...�m

sjk
� 	

�k�k
V�1�2V�2�3 � � �V�i�1�iV�i�iþ1 � � �V�m�1

¼
1

Z

X
�1,�2,...�m

V�1�2V�2�3 � � �V�i�1�i sjk
� 	

�i�i
V�i�iþ1 � � �V�m�1

¼
1

Z
� trace Vi�1sijV

m�iþ1
� �

¼
1

Z

� �
trace sjkV

m
� 	

: ð105Þ

This result is independent of i, and s
jk
vanishes identically for every (j, k).

The correlation function between the spins of the site j in row i and the site b in

row a within plane k, i.e. (i, j, k) and (a, b, k), is written as:

5 sijksabk 4 Av ¼
1

Z

X
�1,�2,...�m

V�1�2 � � �V�i�1�i sjk
� 	

�i�i
V�i�iþ1 � � �V�a�1�a sbkð Þ�a�aV�a�aþ1 � � �

¼
1

Z
� trace Vi�1sjkV

a�isbkV
m�aþ1

� �
¼

1

Z

� �
trace sjkV

a�isbkV
m�aþi

� 	
ð106Þ

For the correlation function between the spins of the site located in plane k and

row i and that located in plane � and row � within column j, i.e. (i, j, k) and (�, j, �),
we have:

5 sijks�j�4 Av ¼
1

Z

X
�1,�2,...�m

V�1�2 . . .V�i�1�i sjk
� 	

�i�i
V�i�iþ1 . . .V���1�� sj�

� 	
����

V����þ1 . . .

¼
1

Z
� trace Vi�1sjkV

��isj�V
m��þ1

� �
¼

1

Z

� �
trace sjkV

��isj�V
m��þi

� 	
ð107Þ

The correlation function between the spins of site b in row a in plane k and site j

in row � in plane �, i.e. (a, b, k) and (�, j, �), could be calculated by multiplication of

the two correlation functions (106) and (107):

5sabks�j�4Av¼5sabksijk4Av �5sijks�j�4Av

¼
1

Z

� �
trace sjkV

a�isbkV
m�aþi

� 	
�

1

Z

� �
trace sjkV

��isj�V
m��þi

� 	
ð108Þ

At zero temperature, all spins are aligned and, as a result, we have:

5 sabksijk 4 Av ¼ þ1, ð109aÞ

5 sijks�j�4 Av ¼ þ1, ð109bÞ

and
< sabks�j�4 Av ¼ þ1: ð109cÞ

for all pairs of sites. At higher temperatures, the correlation functions decrease

and tend to zero for very high temperatures. The correlation function5sabks�j�4Av

between the spins of two sites in different planes in the lattice will be known,
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as soon as we know the correlation function 5sabksijk4Av between spins of two
sites within one plane and the correlation function 5sijks�j�4Av between spins of
two sites within one column. The procedures for evaluating the correlation
functions 5sabksijk4Av and 5sijks�j�4Av are the same due to the symmetry of
the lattice.

5.2. Correlation functions

The partition function for the 3D simple orthorhombic Ising lattices could be
written as:

Z ¼
X
¼	1

Y
n:n:n

exp K�,�,��,�þ1,� þ K 0�,�,��þ1,�, � þ K 00�,�,��,�,�þ1
� 	

¼ ðcoshK coshK 0 coshK 00ÞN

�
X
¼	1

Y
n:n:n

1þ z1�,�,��,�þ1,�
� 	

1þ z2�,�,��þ1,�, �
� 	

1þ z3�,�,��,�,�þ1
� 	

ð110Þ

where z1¼ tanh K, z2¼ tanh K0 and z3¼ tanh K00. The square of the Pfaffian is the
determinant of a skew-symmetric matrix A so that:

Z2 ¼ ð2 coshK coshK 0 coshK 00Þ2N Aj j: ð111Þ

The correlation between two spins at the sites (1, 1, 1) and (1þm, 1þ n, 1þ l)
could be defined as:

5 1,1,11þm,1þn,1þl 4 ¼
1

Z
ðcoshK coshK 0 coshK 00ÞN

X
¼	1

1,1,11þm,1þn,1þl

�
Y
n:n:n

1þ z1�,�,��,�þ1,�
� 	

1þ z2�,�,��þ1, �, �
� 	

� 1þ z3�,�,��,�,�þ1
� 	

: ð112Þ

Similar to the 2D Ising case, the determinant of a skew-symmetric matrix A is
equal to the square of the Pfaffian. However, the skew-symmetric matrix A for the
3D simple orthorhombic Ising lattices is actually a three-dimensional matrix and the
laws of its operations are unknown. It is difficulty to evaluate the spin correlation
function of 3D Ising lattices, simply following the Montroll et al. method [249].
Fortunately, we have found the putative solution (49) for 3D simple orthorhombic
Ising lattices for finite temperatures, based on the two conjectures. We could
immediately find out the similarity between the formulae for the 3D and 2D Ising
lattices. Therefore, following the Montroll et al. procedure for the 2D Ising lattice
[249], we could define an effective skew-symmetric matrix Aeff as.

Aeff ¼

0 1þ z1e
i!0 �1 1

�1� z1e
�i!0 0 1 �1

1 �1 0 1þ z2, effe
i!

1 1 �1� z2, effe
�i! 0

2
6664

3
7775, ð113Þ

with z2,eff¼ tanh (K0 þK00 þK000)¼ z2 z3 z4 and z4¼ tanh K000.
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The spin correlation function at finite temperatures of the 3D simple

orthorhombic Ising lattices could be expressed effectively as:

Zz�n1 z�l2;eff 5 r1;1r
eff
1þn:1þl 4

¼ ðcoshK coshðK0 þ K00 þ K000ÞÞN
X
¼	1

Yn
n0¼1

1þ z�11 1;n01;1þn0
� 	

�
Yl
l0¼1

1þ z�12;effl0;1þn1þl0;1þn

� �Y
n:n

0
1þ z1�;��;�þ1
� 	

1þ z2;eff�;��þ1;�
� 	

: ð114Þ

The formula (114) has a form similar to that used by Montroll et al. [249]

Following the same procedure same as equations (18) – (40) of the Montroll et al.

paper [249], one gets:

5 1, 1
eff
1, 2 4 ¼

1

2�

Z �

��

ei�
�ð!Þd!: ð115Þ

Here �*(!) is the function, as expressed by:

e2i�
�

¼
z1z
�
2, effe

i! � 1
� �

z1e
i! � z�2, eff

� �
ei! � z1z

�
2, eff

� �
z�2, effe

i! � z1

� � , ð116Þ

with

z�2, eff ¼
1� z2, eff
1þ z2, eff

¼ e�2ðK
0þK 00þK 000Þ: ð117Þ

Finally, the correlation could be written as the Toeplitz determinant

[249, 253, 254]:

5 1, 1
eff
1, 1þl 4 ¼

a0 a1 a2 : : : al�1

a�1 a0 a1 : : : al�2

a�2 a�1 a0 : : : al�3

: : : : : : :

: : : : : : :

: : : : : : :

a�lþ1 a�lþ2 a�lþ3 : : : a0

����������������

����������������

, ð118Þ

where

ar ¼
1

2�

Z �

��

e�ir!ei�
�ð!Þd!, ð119Þ

are the coefficients in a series expansion of ei�*.
According to the dimension units for the expressions of the correlation functions,

the following relations could be realized:

5 1,1,11,1,1þl 4 ¼ 5 1, 1
eff
1, 1þl 4

3, ð120Þ
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and it yields:

I2=3 ¼ lim
l!1

5 1,1,11,1,1þl 4 1=3 ¼ lim
l!1

5 1, 1
eff
1, 1þl > : ð121Þ

Following the procedure of Montroll et al. [249], it is known from the Szego
theorem that, if Dm(f) is the determinant of a Toepltiz matrix whose elements are the
coefficients in the Laurent expansion of a function f(!), then [249, 253, 254]:

lim
m!1

DmðfÞ

GðfÞmþ1
¼ exp

X1
1

nknkn

 !
, ð122Þ

where

GðfÞ ¼ exp
1

2�

Z �

��

ln fð!Þd!

� �
, ð123Þ

and

ln fð!Þ ¼
X1

n¼�1

kne
in!: ð124Þ

To obtain kn, we require the Fourier expansion of:

ln fð!Þ ¼ i� �ð!Þ ¼
1

2
ln

z1z
�
2, effe

i! � 1
� �

z1e
i! � z�2, eff

� �
ei! � z1z

�
2, eff

� �
z�2, effe

i! � z1

� � : ð125Þ

in two different temperature ranges, for T5Tc, z�2, eff 5 z1 5 1; for 14T4Tc,
z1 5 z�2, eff5 1. The spontaneous magnetization below the critical temperature
could be derived as:

I ¼ 1�
1� z21
� 	2

z�22, eff

z21 1� z�22, eff

� �2
2
64

3
75

3=8

¼ 1�
1� z21
� 	2

1� z22z
2
3z

2
4

� 	2
16z21z

2
2z

2
3z

2
4

" #3=8

¼ 1�
16x21x

2
2x

2
3x

2
4

1� x21
� 	2

1� x22x
2
3x

2
4

� 	2
" #3=8

¼ 1� sinh�2 2K sinh�2 2ðK 0 þ K 00 þ K 000Þ
 
3=8

ð126Þ

The spontaneous magnetization I derived in this method is inconsistent with
that obtained in section 4. Similarly, we could prove that, for14T4Tc, I¼ 0, sinceP1

1 nknk�n ¼ �1, as
P

(1/n) is divergent.

5.3. Short-range order

The above results for the correlation and spontaneous magnetization could be
summarized as follows. The form of the formula for the correlation or the
spontaneous magnetization of the 3D simple orthorhombic Ising model should be

3D-ordering in Ising magnet 5351
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the same as the cubic power of that for the 2D rectangular Ising model, where
transformations of z2! z2, eff ¼ z2z3z4, z�2 ! z�2, eff, x2! x2x3x4, and K0 !K0 þ
K00 þK000are performed. Furthermore, from the point of view of the dimensions of

units, one could expect the transformation of N! N3=2.
Following Wu’s study [252], the correlation function SN of the 3D simple

orthorhombic Ising lattices is re-written as:

S1=3
N ¼

a0 a�1 a�2 : : : a�Nþ1

a1 a0 a�1 : : : a�Nþ2

a2 a1 a0 : : : a�Nþ3

: : : : : : :

: : : : : : :

: : : : : : :

aN�1 aN�2 aN�3 : : : a0

�����������������

�����������������

, ð127Þ

where

an ¼
1

2�

Z 2�

0

’ð�Þe�in�d�, ð128Þ

with

’ð�Þ ¼ ei�
�

¼
1� �1e

i�
� 	

1� �2e
�i�

� 	
1� �1e�i�ð Þ 1� �2ei�ð Þ

� �1=2
: ð129Þ

Here

�1 ¼ z1z
�
2, eff ¼ z1z

�
2z
�
3z
�
4, ð130aÞ

�2 ¼
z�2, eff
z1
¼

z�2z
�
3z
�
4

z1
: ð130bÞ

For a temperature above the critical point, 14T4Tc, similar to the Wu
procedure [252] and according to the Szego theorem [253,254], the N�N Toeplitz
determinant RN is given by:

lim
N!1
ð�1ÞNRN ¼ 1� �21

� 	
1� ��22

� 	
1�

�1
�2

� �2
" #3=4

: ð131Þ

SN reads as:

SN ¼ ð�1Þ
NRNþ1xN: ð132Þ

The Wiener–Hopf procedure is employed for solving xN [252]. For 14T4Tc,
the desired xN is found to be:

x1=3N ¼
�

�

1

2�i

I
d� � �N�1Pð��1ÞQð�Þ�1

¼
1

2�i

I
d� � �N�1 1� �1�ð Þ 1� �1�

�1
� 	

1� ��12 �
� 	

1� ��12 �
�1

� 	 
�1=2
ð133Þ
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Then

S1=3
N ¼ ð�1Þ

NRNþ1

 
1=3
x1=3N ¼ 1� �21

� 	
1� ��22

� 	
1�

�1
�2

� �2
" #1=4

� x1=3N : ð134Þ

Expanding the integrand of the equation and integrating term by term lead to SN

and, finally, performing the transformation of N! N3=2 results in:

SN¼
�

�
��3=2N�9=4��3N

3=2

2 1��21
� 	3=4

1���22

� 	�3=4
1��1�2ð Þ

�3=2

� 1þ
1

4
N�3=2A14 þ

3

16
N�3 A24 �

5

6

� �
þ
15

64
N�9=2 A34 �

7

6
A14

� �
þ�� �

� �3
ð135Þ

The functions and parameters in equations (132)–(135) were defined in section II

of Wu’s paper [252].
For temperatures below Tc, the spontaneous magnetization of the 3D simple

orthorhombic Ising magnet would behave as:

S1 ¼ 1� �21
� 	3=4

1� �22
� 	3=4

ð1� �1�2Þ
�3=2, ð136Þ

so that,

S1=3
1 ¼ 1� �21

� 	1=4
1� �22
� 	1=4

ð1� �1�2Þ
�1=2

Y1
n¼N

x1=30n : ð137Þ

Then, one would obtain:

SN¼ 1��21
� 	3=4

1��22
� 	3=4

ð1��1�2Þ
�3=2 1þ

1

2�N3
�2N

3=2

2 ��12 ��2
� 	�2��

�

� 1þ
1

2N3=2
ð�A15 þ4x 03Þ

�
þ

3

4N3
�A25 þA2

15 �2x 03A15 þ6x 023 �
13

6

� �
þ�� �

��3

ð138Þ

after performing the transformation ofN! N3=2. The parameters in equation (138)

are the same as those in section III of Wu’s paper [252].
At the critical point, T¼Tc, one would derive:

S
ð0Þ
N

� �1=3
¼ e1=421=12A�3N�1=4 1�

1

64
N�2 þ � � �

� �
: ð139Þ

Namely,

S
ð0Þ
N ¼ e3=421=4A�9N�3=4 1�

1

64
N�2 þ � � �

� �3

: ð140Þ
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Performing the transformation ofN! N3=2 leads to:

S
ð0Þ
N ¼ e3=421=4A�9N�9=8 1�

1

64
N�3 þ � � �

� �3

¼ e3=421=4A�9N�9=8 1�
3

64
N�3 þ � � �

� �
: ð141Þ

Similar to the 2D Ising case [252], the following relationship is valid

SN � 1� �21
� 	3=4

1� �1�2ð Þ
�3=2S

ð0Þ
N , ð142Þ

for the whole temperature range of 14T40. More explicitly, at the critical point:

SN � ð1þ �1Þ
3=4
ð1� �1Þ

�3=4S
ð0Þ
N , ð143Þ

as N!1. Thus, the correlation at the critical point would behave as:

SN � e3=421=4A�9ð1þ �1Þ
3=4
ð1� �1Þ

�3=4N�9=8 1�
3

64
N�3 þ � � �

� �
, ð144Þ

approximately for large N.
Therefore, for the 3D Ising lattice, the correlation at the critical point could be

written as:

�cðrÞ � D
a

r

� �9=8
¼ D

a

r

� �d�2þ�
: ð145Þ

The critical exponent � is found to be 1/8 for d¼ 3. The Fourier transformation

yields:

�
^

ðk, vcÞ � 4�

Z 1=ka

0

D
a

r

� �9=8
eik�rr2dr �

D
^

kaj j15=8
¼

D
^

kaj j2��
: ð146Þ

From equation (146), again, the critical exponent � is 1/8.

5.4. True range of the correlation

The true range �x of the correlation of the 3D simple orthorhombic

Ising system could be determined by a procedure similar to that used for the 2D

Ising system [103,247].

�xa½ 

3=2
¼ � lim

n!1
ln
l�max

lþmax

¼ 2ðK � � K 0 � K 00 � K 000Þ ¼ ln cothK� 2ðK 0 þ K 00 þ K 000Þ

¼ ln
1� z2ð Þ 1� z3ð Þ 1� z4ð Þ

z1 1þ z2ð Þ 1þ z3ð Þ 1þ z4ð Þ
¼ ln

x2x3x4 1þ x1ð Þ

1� x1ð Þ
ð147Þ

with �x¼ 1/�, � is the correlation length. The power 3/2 for �xa is added,

in accordance with the scale dimension. At the Curie temperature, �x! 0 or
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�!1, namely,

ð1� z2Þð1� z3Þð1� z4Þ

z1ð1þ z2Þð1þ z3Þð1þ z4Þ
¼

x2x3x4ð1þ x1Þ

ð1� x1Þ
¼ 1: ð148Þ

For the simple cubic lattice, the relation is reduced to:

�xa½ 

3=2
¼ � lim

n!1
ln
l�max

lþmax

¼ 2ðK � � 3KÞ ¼ ln cothK� 6K

¼ ln
ð1� zÞ3

zð1þ zÞ3
¼ ln

x3ð1þ xÞ

ð1� xÞ
ð149Þ

At the Curie temperature, �x! 0 or �!1, we would have,

ð1� zÞ3

zð1þ zÞ3
¼

x3ð1þ xÞ

ð1� xÞ
¼ 1: ð150Þ

It is:

z4 þ 4z3 þ 4z� 1 ¼ 0, ð151Þ

or

x4 þ x3 þ x� 1 ¼ 0: ð152Þ

One of the solutions of the equations above leads to the critical point of the

simple cubic Ising lattice: zc ¼
ffiffiffi
5
p
� 2 or xc ¼ ðð

ffiffiffi
5
p
� 1Þ=2Þ. Notice that the values of

zc and xc for the 3D simple cubic Ising lattice differ, whereas those for the 2D square

Ising lattice are the same [103, 247]. For the 2D square Ising lattice [103, 247],

zc ¼ xc ¼
ffiffiffi
2
p
� 1 is derived from ((1�z)/(z(1þ z)))¼ (x(1þ x)/(1�x))¼ 1, i.e. z2þ

2z�1¼ 0 and x2þ 2x �1¼ 0. It is worthwhile noting that only the 2D square

Ising lattice satisfies the existence of the same values for zc and xc, since

z¼ (1�x)/(1þx) (or x¼ (1�z)/(1þ z)) is always valid for z¼ tanh K and x¼ e�2K

and, if one set z¼ x, one would immediately obtain x2þ 2x �1¼ 0 (or z2þ 2z

�1¼ 0).
Near the critical point, the critical behaviour of the true range �x of the

correlation of the simple cubic Ising lattice could be described by:

�xa½ 

3=2
¼ 5ln

ffiffiffi
5
p
þ1

2

T�Tc

Tc

� �
1þ

ffiffiffi
5
p

5
ln

ffiffiffi
5
p
þ1

2
�1

� �
T�Tc

Tc

� �
þo

T�Tc

Tc

� �2
" #( )

ð153Þ

Thus, the leading term of the true range �x of the correlation is taken to be:

�xa /
T� Tc

T

� �2=3
: ð154Þ

The critical exponent � is found to equal to 2/3. Noticed again that the two

golden solutions, ðð
ffiffiffi
5
p
� 1Þ=2Þ and ðð

ffiffiffi
5
p
þ 1Þ=2Þ of the equation x2þx �1¼ 0 appear

in the formula for the critical behaviour of the true range �x of the correlation of the

3D-ordering in Ising magnet 5355
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3D simple cubic Ising model, while the two silver solutions of the equation x2þ 2x
�1¼ 0 show up in the Fisher formula for the 2D square Ising model [103, 247]. It is
interesting to note that, if the coordinates of a point in the golden spiral are
written as [r¼ ’2�/�, �] as graphed on a polar axis, the golden ratio is related with the
golden spiral by ln ’ ¼ ln ð

ffiffiffi
5
p
þ 1Þ=2

� 	
¼ ð�=2�Þ ln r.

The combination of the critical behaviours of the spin correlation functions
results in:

�ðr,TÞ � D
a

r

� �9=8
e��r 1þQð�, rÞ½ 
 ¼ D

a

r

� �9=8
e��r 1�

3

64
r�3 þ � � �

� �
: ð155Þ

In the following sub-section, we shall focus on evaluating the correlation
function5sijksabk4Av between spins of two sites within one plane.

5.5. Procedure for evaluating averages

Following the previous work of Kaufman and Onsager [18], we shall first evaluate
the correlation function5sijksabk4Av between spins of two sites within one plane.
We shall employ the approximation that all eigenvalues of V are negligible compared
with the largest value, when the power of the eigenvalues is sufficiently high.
To make use of this approximation, we transform (106) by ), which brings V to its
diagonal form:

5 s1,1,ks1þa, b, k 4 Av ¼
X2nl
i¼1

lmi

( )�1
�
X2nl
i¼1

lm�ai � �s1, kV
asb, k��1

� 	
ii

( )
: ð156Þ

Similar to Kaufman and Onsager’s work [18], for simplicity of notation, we will
no longer differentiate between odd- and even-indexed angles for)þ and)� and use
the following at all temperatures:

5 s1,1,ks1þa, b, k 4 Av ffi l�a � �þs1, kV
asb, k�

�1
þ

� 	
11
: ð470Þ

The quantity ) has been shown in section 3, in terms of the rotation it reduces in
the spinor base P1, Q1, P2, Q2, . . . , Pnl, Qnl. In section 3, we had:

� ¼ g � SðTHÞ, ð157Þ

where the transformations g, T and H are represented by equations (42), (38)
and (48), respectively. The simplest correction function is found to be [18]:

5 s1s2 4
1=3
AV ¼

1

ðnlÞ3=2

X
t

cos ��t ¼ � cosh2 K � ��1 þ sinh2 K � ���1, ð158Þ

with

�k�l ¼
1

n � l � o
�

X
tx, ty, tz

wx cos ðk� lÞ
tx�

n
þ �0t

h i
þ wy cos ðk� lÞ

ty�

l
þ �0t

h in

þ wz cos ðk� lÞ
tz�

o
þ �0t

h io
ð159Þ
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and the general form for the correction function along a row in the 3D lattice is

derived as:

5 s1s1þk 4
1=3
AV ¼ ð�1Þ

k cosh2 K � ��k � sinh2 K � ���k
 


, ð160Þ

with

�k ¼

�1 �2 �3 �4 � � � �k

�0 �1 �2 �3 � � � �k�1

��1 �0 �1 �2 � � � �k�2

� � � � � � � �

��kþ2 ��kþ3 ��kþ4 ��kþ5 � � � �1

�������������

�������������
, ð161Þ

and

��k ¼

��1 ��2 ��3 ��4 � � � ��k

�0 ��1 ��2 ��3 � � � ��kþ1

�1 �0 ��1 ��2 � � � ��kþ2

� � � � � � � �

�k�2 �k�3 �k�4 �k�5 � � � ��1

�������������

�������������
, ð162Þ

Montroll et al. [249] proved that the correlations in a row in the form of a single

Toeplitz determinant are equivalent to the Onsager–Kaufman results in the form of

two Toeplitz determinants. Therefore, for the present 3D system, the results obtained

following the Onsager–Kaufman process are also equivalent to those obtained

following the Montroll et al.

6. Susceptibility

The susceptibility of the 3D simple orthorhombic Ising system could be derived by a

procedure similar to that developed by Fisher [98, 99]. The susceptibility could be

evaluated by:

�0ðTÞ ¼
N
2

kBT

X
l,m,n

vlmn!lmnðTÞ: ð163Þ

For 3D simple orthorhombic Ising lattices, from the correlation at the critical

point one has:

!0mnðTcÞ ¼ 5 s1, 1, 1s1, 1þm, 1 4 �
A

m9=8
ðm!1Þ ð164Þ

where A is a constant. The relation above could be extended as:

!lmnðTcÞ �
Að�, ’Þ

k9=8
ðk!1Þ ð165Þ
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where k2¼ l2þm2
þ n2, A(�, ’) is similar to A. Similar to the 2D case, one would

arrive at:

!lmnðTÞ � Að�, ’Þk�9=8 exp �kb 1�
Tc

T

� �2=3
" #

: ð166Þ

Thus, one could derive the susceptibility:

�FðTÞ �
N
2

kBT

Z 1
0

Z 2�

0

Z �

0

Að�, ’Þk�9=8 exp �kb 1�
Tc

T

� �2=3
" #

k2 sin �d�d’dk: ð167Þ

Finally,

�FðTÞ �
N
2

kBT

4�b�15=8�ð15=8Þ

ð1� Tc=TÞ
5=4
/

1

ð1� Tc=TÞ
5=4
: ð168Þ

Therefore, the critical exponent � is equal to 5/4 for the 3D Ising model.

7. Critical exponents

The critical exponents of various physical systems have been investigated intensively,
since they are the most important factors in understanding the critical behaviour of

continuous phase transitions. The 2D Ising model is an example solved explicitly,
which provides the exact values of the critical exponents [13]. Due to the lack of an

exact solution for the 3D Ising model, the most reliable information on its
critical behaviour is provided by renormalization group theory near the critical point

[126–191, 208–225]. To date, the region near the critical point has been explored

by various methods of approximation with high precision [59–225], but the exact
mathematical solution for the 3D Ising model is the key for deriving the exact values

of the critical exponents.
Fisher and Chen [255] evaluated the validity of hyperscaling in three dimensions

for scalar spin systems. By applying a real space version of the Ginzburg criterion,

the role of fluctuations and, hence, the self-consistency of the mean field theory were
assessed in a simple fashion for a variety of phase transitions [256]. Based on the

concept of the marginal dimensionality d*, critical behaviour was discussed [257].
When the dimensionality d for a system is larger than the corresponding d*, the

mean field theory describes the correct critical behaviour [142], where d*¼ 4 for
the short-range interactions and d*¼ 3 for uniaxial dipolar ferromagnets or

ferroelectrics and for tricritical behaviour. When d¼ d*, the renormalization group
equations are exact and the Landau behaviour is modified by additional ‘weak’

singular behaviour, such as logarithmic corrections. One then makes the so-called "
expansion, "¼ d*� d, to estimate the critical behaviour for d5d*.

Various physical quantities diverge to infinity or converge to zero as the

temperature or other variables approach its critical point. The exponents near
the critical temperature are defined as follows. In the region just below the
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critical point, the spontaneous magnetization is well approximated by a power law
[142–144, 152, 153]:

M / ðTc � TÞ�: ð169Þ

The magnetization at Tc has a critical behaviour as:

M � hj j1=�: ð170Þ

The correlation function has property that, if T4Tc, it falls off with r, with
asymptotic behaviour for large r:

�ðrÞ � exp �
r

�ðTÞ

� �
, ð171Þ

where �(T) is the correlation length, which approaches infinity as T!Tc.

�ðTÞ � ðT� TcÞ
��: ð172Þ

The correlation function at Tc falls as a power of r in the form:

�cðrÞ �
1

rd�2þ�
: ð173Þ

The critical behaviour of the magnetic susceptibility is described as:

� � ðT� TcÞ
�� : ð174Þ

Similarly, the critical exponent � controls the critical behaviour of the specific
heat near the critical temperature:

Ch � ðT� TcÞ
��: ð175Þ

The zero-angle (k! 0) scattering intensity apparently diverges at the critical
point as:

IcðkÞ �
1

k2��
, ðk! 0Þ: ð176Þ

An inverse range parameter �1(T) is defined to measure the slope of 1/I(k,T)
against k2 as k! 0. This again vanishes at the critical point and in zero field it has:

�1ðTÞ � ðT� TcÞ
�: ð177Þ

Actually, there are six critical exponents �, �, �, �, � and �, which are related
by the following four scaling laws [142–144, 152, 153, 258, 259]:

�þ 2�þ � ¼ 2 ðRushbrooke0s lawÞ; ð178aÞ

� ¼ �ð�� 1Þ ðWisdom0s lawÞ; ð178bÞ

� ¼ �ð2� �Þ ðFisher0s lawÞ; ð178cÞ

�d ¼ 2� � ðJosephson0s lawÞ: ð178dÞ
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There are several other expressions between the critical exponents, but not

independent of these four equations [255, 260, 261]. Therefore, only two independent

parameters exist among these critical exponents.
The value for the critical exponent � can be evaluated in a simpler manner. The

scale dimension [�x] for the true range of the correlation is 1, while the scale

dimension [f] for the free energy equals d. From

� ¼
1

�x
/ T� Tcj j��¼ ���: ð179Þ

Here �¼T�Tc. We have

f � �dx � T� Tcj j�d¼ ��d: ð180Þ

On the other hand, the specific heat CB is determined by:

CB ¼ �T
@2f

@T2
� ��d�2 � ���: ð181Þ

One has the relation of �d¼ 2��, which could be introduced to equation (180)

to have:

�x � �
� ¼ �ð2��Þ=d: ð182Þ

Therefore, we have �¼ 2/3 for d¼ 3 and �¼ 0, in comparison to �¼ 1 for d¼ 2

and �¼ 0.
According to Ryazanov [262], three temperature regions: (1) �5�r�3/2,

(2)�r�3/25�5r�3/2, (3) �4r�3/2, exist with different behaviours of the correlation.

r represents the distance (p in Ryazanov’s paper). Compared with Ryazanov’s

description for the 2D Ising system [262], the transformation of r! r3/2 has been

performed for the present 3D Ising system. In the second region (in the vicinity of the

critical point), the distance to the phase transition point is smaller than the

temperature fluctuations (� 1=
ffiffiffiffi
N
p

; N is the number of particles) in regions

with dimensions of order r3/2. The temperature fluctuations are defined as �f¼ r3/2

for d¼ 3. It is expected that the correlation functions depend only on the ratio

�=�f ¼ r3=2�. In the region with large values of r3/2�, the correlation decays as

exp(�r�2/3), also in agreement with �¼ 2/3. Near the critical point of the 3D Ising

magnet, the spontaneous magnetization behaves as I � �3=8, while the long-range

order correlation behaves like S1 � �
3=4. The relationship between the average

temperature and the distance is � � 1=r3=2 and the correlation function is in the order

of �3=4 ¼ 1=r9=8. The correlation function near the critical point is:

�cðrÞ �
1

r9=8
: ð183Þ

and

�
^

ðk, vcÞ �
1

kaj j2��
, ð184Þ

5360 Z.-D. Zhang



D
ow

nl
oa

de
d 

B
y:

 [Z
ha

ng
, Z

-D
] A

t: 
00

:3
4 

31
 O

ct
ob

er
 2

00
7 

in good agreement with the results in the section 5. The critical exponent � is found

to be 1/8. It is expected that, as in the 2D case, the correlations for the 3D Ising

lattice along the rows and along the diagonals is different only in the region greatly
above the transition point, where the correlation radius is small and is close to the

distance between the nearest neighbours [262].
The critical exponents �¼ 0, �¼ 3/8, �¼ 5/4, �¼ 13/3, �¼ 1/8 and �¼ 2/3 are

derived from the two conjectures for 3D simple orthorhombic Ising lattices satisfying
the scaling laws, showing universality behaviour. These putative exact critical

exponents are tabulated in table 1, together with exact values for 1D and 2D Ising

lattices, approximate values obtained by the renormalization group and the high-

temperature series expansion for the 3D Ising lattice, and those of the mean field
theory. As for the critical point, we will roughly compare data for the last 60 years

and then recent data more carefully. It is clear from table 1 that the values of the

critical exponents for temperatures below Tc, taken from Fisher [103], are not very

reliable due to the appearance of the negative critical exponent �. Thus, we do not
include this group of the critical exponents in the discussion below. As stated above,

the specific heat of the 3D Ising lattice has the same singularity of logarithm as the

2D one, whereas the specific heat of the 4D system, as predicted by the mean field

theory, shows a discontinuity at the critical point. The exact values for the critical
exponent � are all equal to zero for the 2D, 3D and 4D (mean field) systems.

The small values, but non-zero, of the critical exponent �, range from 0.0625 to

0.125, obtained by the renormalization group and the high-temperature series

expansion, are attributed to uncertainties of these approximation methods due to the
existence of systematic errors. It is understood that the behaviour of curves with a

power law of �50.2 are very close to that of logarithms so that the approximation

approaches cannot resolve it. The exact values for the critical exponent � are 1/8, 3/8

and 1/2 for 2D, 3D and (mean field) 4D systems, respectively. The putative exact
critical exponent � of 3/8¼ 0.375 is slightly higher than the approximation values of

Table 1. Putative exact critical exponents for the 3D Ising lattice, together with the exact
values for the 2D Ising lattice, the approximate values obtained by the Monte Carlo

renormalization group (PV-MC) [154], the renormalization group (RG) with the " expansion
to order "2, the high-temperature series expansion (SE) for the 3D lattice [103, 142] and those
of the mean field (MF) theory. PV taken from Pelissetto and Vicari’s review [154], WK from
Wilson and Kogut’s review [142], F from Fisher’s series expansion [103]. Note that Domb’s

values in [107] are the same as Fisher’s (T4Tc) [103].

Ising � � � � � �

1D Exact – – 2 1 1 2
2D Exact 0 1/8 7/4 15 1/4 1
3D Exact 0 3/8 5/4 13/3 1/8 2/3
4D MF 0 1/2 1 3 0 1/2
3D WK-RG 0.077 0.340 1.244 4.46 0.037 0.626
3D PV-MC 0.110 0.3265 1.2372 4.789 0.0364 0.6301
3D WK-SE 0.125 0.312 1.250 5.150 0.055 0.642

	0.015 	0.003 	0.003 	0.02 	0.010 	0.003
3D F(T5Tc) 1/16 5/16 21/16 26/5 �1/31 31/48
3D F(T4Tc) 1/8 5/16 5/4 5 0 5/8
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0.312–0.340. The exact values for the critical exponent � are 2, 7/4, 5/4 and 1 for 1D,
2D, 3D and (mean field) 4D systems, respectively. The putative exact critical
exponent � of 5/4¼ 1.25 is exactly the same as the approximation values ranging
from 1.244 to 1.25, within errors of 0.48%. Series for the initial susceptibility at high
temperatures provided the smoothest and most regular patterns of behaviour of
coefficients, which were all found to be positive in sign, and used to estimate the
Curie temperatures and critical exponents [107]. One was tempted to conjecture
that the exact value for the critical exponent � of the 3D Ising lattice is simply �¼ 5/4
[95, 103]. Even if it is not exact, it appears to be accurate to within 1/2% and
certainly provides an excellent representation of the susceptibility coefficients [83, 95,
103, 107]. We are confident that the exact critical exponent � equals 5/4 for the 3D
Ising model. The putative exact critical exponent � of 13/3¼ 4.333 . . . for the 3D Ising
lattice is between 15 and 3 for the 2D and 4D (mean field) Ising lattices, which is
slightly lower than the approximation values of 4.46–5.15. The putative exact critical
exponent � of 1/8¼ 0.125 for the 3D Ising lattice is half that for the 2D Ising lattice,
which is slightly larger than the approximation values of 0–0.055. The putative
exact critical exponent � of 2/3 for the 3D Ising lattice is reasonable since it is
between 1 and 1/2 for the 2D and 4D (mean field) Ising lattices and is very close to
the approximation values of 0.625–0.642. It could be concluded that all the putative
exact critical exponents for the 3D Ising lattice are located between those for the 2D
and 4D (mean field) values, which are close to those obtained by various
approximation methods, if compared roughly.

The critical exponents �¼ 1/8, �¼ 5/16, �¼ 5/4, �¼ 5, �¼ 0 and �¼ 5/8,
suggested by Fisher [103] and Domb [107], which were established by conjectures
from the results of series expansions, have been well-accepted by the community for
almost 40 years. However, as remarked by Domb [107], there are significant
discrepancies in numerical values. These are well illustrated by the formula for �,
2� � ¼ dð�� 1Þ=ð�þ 1Þ, if one takes �¼ 5 as has been estimated for the Ising model
of spin 1/2 in 3D, one finds that �¼ 0. But direct numerical analysis gives � � 1/18,
and this is consistent with the result of renormalization group expansions. If one
substitutes �� 1/18 into this equation, one will obtain � � 4.7, which is outside the
confidence limits in the analysis of series expansions. This must be regarded as a
serious inconsistency [107, 263]. Furthermore, the value of �¼ 0 in the group of
critical exponents, suggested by Fisher [103] and Domb [107], gives the same result as
predicted by the main field theory, which is not relevant. � denotes the deviation
from the Ornstein–Zernike behaviour, which cannot be zero [236].

Regarding the actual values of critical exponents, one knows that in 2D they are
all simple integers and fractions. Numerical data suggest a similar result in 3D.
It would be difficult to support any such conclusions from a renormalization group
treatment. Nevertheless, as stated by Domb [107], the possibility is appealing and
hints that there may be simplifying features of the 3D Ising model which remain to be
discovered. Our putative exact critical exponents �¼ 0, �¼ 3/8, � ¼ 5/4, �¼ 13/3,
�¼ 1/8 and �¼ 2/3 for the 3D Ising lattices are all simple integers and fractions,
which are much simpler than those suggested by Fisher and Domb [103, 107]. It is
interesting to compare our putative critical exponents further with those for the 1D
Ising model. It is impossible to derive the critical exponents � and � directly for the
1D Ising model, since there is no spontaneous magnetization at finite temperature.
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Assuming that the scaling laws still hold for the 1D case, however, one would have
�¼ 0 and �¼ 0 as derived from �¼ 2, �¼1, �¼ 1 and �¼ 2 (as shown in table 1)
[264]. The difference between the critical exponents � for the 1D and 2D Ising lattices
is 1/8, which is the same as the difference between the critical exponents � for the 3D
and 4D Ising lattices. The difference between the critical exponents � for the 2D and
3D Ising lattices is twice this value. Similarly, the difference between the critical
exponents � for the 2D and 3D Ising lattices is twice the difference between the
critical exponents � for the 1D and 2D Ising lattices. The latter is the same as the
difference between the critical exponents � for the 3D and 4D Ising lattices,
which equal 1/4. Indeed, the feature is very simple, symmetric and beautiful.

Recent advances in Monte Carlo and renormalization group techniques have
improved the precision of calculations of critical exponents. If compared precisely,
our putative exact values �¼ 0, �¼ 3/8, �¼ 5/4, �¼ 13/3, �¼ 1/8 and �¼ 2/3 differ
with the values of �¼ 0.110(1), �¼ 0.3265(3), � ¼ 1.2372(5), �¼ 4.789(2),
�¼ 0.0364(5) and �¼ 0.6301(4), well-established in the Pelissetto and Vicari review
[154], in consideration of the high–precision of simulations. Nowadays, these
Pelissetto and Vicari values are widely accepted. We could evaluate the difference
between the putative exact solution and the approximations by errors of
��¼ |�EX��PV|/�EX, ��¼ |�EX��PV|/�EX, . . . for all the critical exponents, where
the subscripts of EX and PV denote the exact solutions and the Pelissetto and Vicari
values. We find that ��¼1, ��¼ 12.93%, ��¼ 1.02%, ��¼ 10.51%,
��¼ 70.88% and ��¼ 5.48% for these critical exponents. It is evident that our
putative exact solution for the critical exponent � is very close to the approximation
value, within an error of 1.02%. The differences in the estimates of other critical
exponents actually arise from the determination of the critical exponent �, since there
are only two independent parameters among all the six critical exponents.
As discussed in detail in section 8, such differences between the putative exact
solutions and the approximations are attributed to the existence of systematical
errors of the Monte Carlo and the renormalization group techniques. In the Binder
and Luijten review [213], the values of yt¼ 1/�¼ 1.588(2) and yh¼ 3��/�¼ 2.482(2)
are established, in accordance with data in various references published between
1980 and 1999. Our putative exact solutions yield yt¼ 1/�¼ 1.5 and yh¼ 3��/
�¼ 2.4375, which are very close with the Binder and Luijten values within the errors
of 5.87 and 1.83%, respectively. The origins of these errors will be discussed in detail
in section 8.

Note that the only exception is Kaupuzs’ study [167], which predicted �¼ 5/4
and �¼ 2/3, exactly the same as we found for the exact solutions. Kaupuzs [167]
discussed different perturbation theory treatments of the Ginzburg–Landau phase
transition model. The usual perturbation theory was reorganized by an appropriate
grouping of Feynman diagrams of ’4 model with O(n) symmetry [167]. As a result,
equations for calculation of the two-point correlation function were obtained, which
allowed the prediction of possible exact values of critical exponents in two- and
three-dimensions by proving relevant scaling properties of the asymptotic solution at
(and near) the criticality [219, 265–267].

It is emphasized that our putative exact critical exponents would represent the
behaviour of the system exactly at the critical region, as the critical point could
be fixed exactly, which would have physical significances correlated directly with the
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existence of the fourth curled-up dimension. From the analysis above, it is clear that
the estimate of the critical exponent � plays a key role in deviations between the exact
solutions and the approximations. For a deeper understanding, the prediction of a
zero critical exponent � reveals that the physical significance completely differs with
the non-zero critical exponent �. As the dimension of the systems alters from 1D to
4D, the critical behaviour should change as a consequence of continued logic.
Namely, all critical indices should vary smoothly with dimensionality [264]. The 1D
Ising model shows no ordering at finite temperature. The specific heat of the 2D
Ising model behaves logarithmically near the critical point, with a zero critical
exponent �. The 4D Ising model has a zero critical exponent � also, but with
discontinuous specific heat at the critical point. It is hard to understand why the 3D
Ising lattice has a power law with a non-zero critical exponent �, where both the 2D
and 4D Ising lattices have the zero critical exponent �. To date, nobody has
succeeded in constructing explicitly a closed form of the eigenvalues as well as the
partition function, leading to a power law with a non-zero critical exponent � for the
3D Ising lattice and which can be reduced to a logarithmic singularity with a zero
critical exponent � for the 2D Ising lattice. From a logical viewpoint of the evolution
of physical properties with dimensionality, it would not be unreasonable to believe
that the specific heat of the 3D Ising model has a logarithmic singularity at the
critical point. On the other hand, the temperature dependence of the specific heat of
the 2D and 3D Ising models, as revealed by various approximation methods [13, 59],
have the same trend and the same behaviour near the critical point. The more
accurate the method, the more the specific heat is like logarithmic singularity.
As shown in the Newell and Montroll review [59], Wakefield’s method gave the
lowest value for the critical point 1/Kc¼ 4.497 [73, 74], which is known to be accurate
except near the critical point [59]. The temperature dependence of the specific heat
obtained by the extrapolation of high- and low-temperature expansions of the
Wakefield method looks more like logarithmic singularity than the others [59]. It is
relevant that the exact solution for the specific heat of the 3D Ising model behaves as
logarithmic singularity at the exact critical point, which is lower than the Wakefield
value. The critical exponent � has proved considerably harder to determine by
various theoretical and experimental techniques. Furthermore, it is very hard for the
approximation approaches and the experimental data fittings to distinguish the
critical behaviour of the logarithmic singularity and the small non-zero critical
exponent �50.2. If one ignored the existence of the non-zero critical exponent � in
the 3D Ising model and accepted the logarithmic singularity, then it would become
much easier. According to the Fisher conjecture of high-temperature series
expansion, the exact value for the critical exponent � of the 3D Ising lattice is
simply � ¼ 5/4 [103], being accurate to within 1/2%, which is the only parameter that
can be accurately determined by high-temperature series expansion theories [103].
Considering the large differences between the critical points of the high-temperature
series expansion and the exact solution, we may conjecture that the determination of
the critical exponent � is insensitive to the exact location of the critical point. Starting
from these two critical exponents �¼ 0 and �¼ 5/4, one could immediately solve
�¼ 3/8, �¼ 13/3, �¼ 1/8 and �¼ 2/3. Considering the insensitive dependence of the
critical exponent � to the exact location of the critical point, we suggest here that the
critical exponent � is the most reliable determined by the renormalization group
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theory and Monte Carlo simulations. As other critical exponents depend sensitively
on the location of the critical point and because the critical point located by these
approximation techniques is far from the exact value, these critical exponents also
deviate from the exact exponents. Nevertheless, starting from the two critical
exponents of �¼ 0 and �¼ 1.2372, one easily finds that �¼ 0.3814, �¼ 4.2438,
�¼ 0.1442 and �¼ 2/3. Then, comparing this group of critical exponents with the
putative exact values, one finds that the critical exponents � and � are the same as the
putative exact values, while the critical exponents �, �, � and � appear to be accurate
within 1.7, 1.0, 2.1 and 15%, respectively. This means that the renormalization group
theory and Monte Carlo simulations are suitable for investigating the critical
phenomena; however, it is better to focus only on the high-accurate determination of
the critical exponent �, since the determination of the critical point and other critical
exponents with high accuracy appears unsuccessful.

It is important to compare the putative exact solution of the critical exponents
with experimental data. In this paragraph, we compare the putative exact critical
exponents with early data collected by Kadanoff et al. [105], Fisher [103], and Wilson
[149]. The critical exponents � of ferromagnetic iron, CuK2Cl4 � 2H2O, is not larger
than 0.17, while the specific heat of nickel is fitted by a logarithmic singularity [105].
Actually, it is very difficult to distinguish the fitting of a power law with �50.2
with that of logarithms. As indicated by Kadanoff et al. [105], a set of data for the
specific heat of CoCl2 � 6H2O can be fitted either by a logarithmic singularity or by
�9 0.19. The critical exponents � of ferromagnetic iron, nickel, EuS, YFeO3 and
CrBr2, determined experimentally, are 0.34	 0.02 (or 0.36	 0.08), 0.51	 0.04
(or 0.33	 0.03), 0.33	 0.015, 0.55	 0.04 (or 0.354	 0.005) and 0.365	 0.015,
respectively [103, 105]. The values of the critical exponents � varies in range of
0.33–0.55, depending sensitively on the method of determination and also on the
data range for fitting. The putative exact value for � is 3/8¼ 0.375, which is very
close to the experimental values 0.36	 0.08 for iron, 0.365	 0.015 for CrBr2, and
is not out of the range of 0.33–0.51 for nickel and 0.354–0.55 for YFeO3.
The experimental data for the critical exponents � of iron, nickel, cobalt, gadolinium
are 1.33	 0.03, 1.29	 0.03 (1.35	 0.02), 1.21	 0.04, 1.33 (1.16	 0.02), respectively
[103,105]. The putative exact value for � is 5/4¼ 1.25, which is very close to the
experimental values 1.29	 0.03 for nickel and 1.21	 0.04 for cobalt. The critical
exponents � of nickel, gadolinium, YFeO3 and CrO2 are found experimentally to be
4.2	 0.1, 4.0	 0.1, 2.8	 0.3 and 5.75, respectively [103,105]. The putative exact
value for � is 13/3, very close to the experimental data for nickel and gadolinium.
The experimental evidence, notably on iron, indicated 0.24�0 0 [103,105],
which is not inconsistence with the putative exact critical exponent �¼ 1/8.
However, experimental uncertainty for a narrow temperature range around the
critical temperature precluded drawing any conclusion about the value of � [105].
The critical exponents � of ferromagnetic iron, antiferromagnetic Cr2O3, �-Fe2O3

and KMnF2 are 0.64	 0.02, 0.67	 0.03, 0.63	 0.04 and 0.67	 0.04, respectively
[105], which are very close to the putative exact value 2/3. Furthermore, the
putative critical exponents � is exactly the same as accepted by Wilson in his review
article [149].

Many factors reduce experimental accuracy, which will be discussed in details in
section 8. For instance, impurities in the magnet sample may affect the value of the

3D-ordering in Ising magnet 5365



D
ow

nl
oa

de
d 

B
y:

 [Z
ha

ng
, Z

-D
] A

t: 
00

:3
4 

31
 O

ct
ob

er
 2

00
7 

critical temperature and, in a polycrystal, Tc may range in a band of the order of
10�4. Good measurements then require the use of single crystals of extreme purity
and well-defined geometry. From bulk measurements, the determination of critical
exponents involves extrapolations to zero internal field values. As stated by
Vicentini-Missoni [268], up to the early 1970s, good data in the critical region are
available only on a few substances, i.e. the nickel data of Weiss and Forrer [269],
and those of Kouvel and Comly [270], the gadolinium data of Graham [271] and the
CrBr3 data of Ho and Litster [272, 273]. In this paragraph, we compare the exact
critical exponents with the data collected in Vicentini-Missoni’s review. The data
(a) shown in table III of Vicentini-Missoni0s paper [268] were determined by least-
squares fit of the function hMSGðxÞ ¼ E1ððxþ x0Þ=x0Þ½1þ E2ððxþ x0Þ=x0Þ

2�


ð��1Þ=2�

to the experimental data [274–276]; in this case � and � were assumed as independent
exponents and � was derived using the scaling relation �¼ �(��1). The critical
exponents obtained by the analysis of Kouvel and Comly’s data are as follows:
CrBr3: �¼ 0.364	 0.005, �¼ 4.32	 0.10, �¼ 1.21; Gd: �¼ 0.370	 0.010,
�¼ 4.39	 0.10, � ¼ 1.25; Ni: �¼ 0.373	 0.016, �¼ 4.44	 0.18, �¼ 1.28 [268, 270].
The critical exponents obtained by the analysis of Weiss and Forrer’s data for Ni are:
�¼ 0.375	 0.013, �¼ 4.48	 0.14, �¼ 1.31 [268, 269]. The critical exponents derived
from several fluids are: CO2: �¼ 0.352	 0.008, �¼ 4.47	 0.12, �¼ 1.22; Xe:
�¼ 0.35	 0.07, �¼ 4.6	 0.1, �¼ 1.26; He4: �¼ 0.355	 0.009, �¼ 4.44	 0.01,
�¼ 1.24. All the data collected in Vicentini-Missoni’s review [268] are in very good
agreements with our putative exact solutions. The putative exact critical exponent
�¼ 3/8 is exactly the same as the experimental value for Ni and Gd within error bars.
The difference between the putative exact critical exponent � and the experimental
value is 2.9% for CrBr3, 6.1% for CO2, 6.7% for Xe and 5.3% for He4.
In consideration of experimental error bars, such difference would reduce to 1.6%
for CrBr3, 4.0% for CO2, 0% for Xe and 2.9% for He4. The putative exact value of
�¼ 13/3 is exactly the same as the experimental values for CrBr3, Gd and Ni within
error bars. The difference between the putative exact critical exponent � and the
experimental value is 3.1% for CO2, 6.2% for Xe and 2.5% for He4. If the
experimental error bars are taken into account, such difference would reduce to
0.4% for CO2, 3.8% for Xe and 2.2% for He4.

As shown in table 1.3 of Kadanoff [264], the real fluids show indices close to, but
not exactly equal to, the indices of the 3D Ising model obtained by various
approximations. However, the critical indices �¼ 1.22	 0.05, �¼ 4.4	 0.2, �¼ 0.123
and �¼ 0.65	 0.05 of real fluids are in good agreements with our putative exact
values. The differences between them are 2.4% for �, 1.5% for �, 1.6% for � and
2.5% for �, which can be further reduced by taking into account experimental errors.
It can be concluded that the critical indices �, �, � and � of real fluids are almost
exactly equal to the putative exact values.

As temperature T, at which two fluid phases are in equilibrium, approaches the
critical temperature Tc, the interfacial tension  is found experimentally to vanish
proportionally to a powder of T – Tc:  � (Tc�T)


 [277]. The exponent 
 is an
important and characteristic critical-point index, with a value that is believed to
be universal and is, in any event, almost certainly in the range 
¼ 1.28	 0.06.
We obtain the putative exact exponent 
¼ 4/3¼ 1.3333 . . . from the scaling law of

þ �¼ 2�� and our exact exponents �¼ 2/3 and �¼ 0. Our putative exact exponent
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 and the experimental value coincide, within experimental error bars. In fact, the
experimental data for the exponent 
 are in range 1.23–1.34 for various systems,
such as argon, xenon, nitrogen, carbon dioxide, chlorotrifluoromethane, hydrogen,
cyclohexane–aniline, cyclohexane–methanol, 3-methylpentane–nitroethane [277].
However, it was emphasized by Buff and Lovett [278] and Wims et al. [279] that,
in the measurement of surface tension by capillary rise and equivalent methods, it is
not 
 but 
 – � that is measured directly, so some of the variability in the value of 

quoted in table I of Widom [277] is a reflection of a discrepancy in the assumed �.
The only direct measurement of interface thickness near the critical point is for the
cyclohexane–methanol system by Huang and Webb [280], who obtained
�¼ 0.67	 0.02. This value fits exactly with our putative exact exponent �¼ 2/3.

Little data have been reported for the critical exponents of ferromagnetic
transition metals, such as Fe, Co and Ni, over the last decade [281, 282]. Shirane
et al. [281] reported the critical exponent �¼ 1.333 for nickel. Seeger et al. [282]
obtained values of �¼ 0.395(10), �¼ 1.345(10) and �¼ 4.35(6) for the asymptotic
critical exponents of nickel, which are close to our putative exact values within errors
of 5.3, 7.6 and 0.4%, respectively. Some experimental results for the critical
exponents, most of them published after 1990, were tabulated in table 7 of the
Pelissetto and Vicari [154]. It is seen from the most recent data that the critical
exponents �, �, �, � and � vary in the range 0.077 – 0.12, 0.315 – 0.341, 1.09 – 1.26,
0.03 – 0.058 and 0.60 – 0.70, respectively, determined by experiments in liquid–
vapour transition in simple fluids, the mixing transition in multicomponent fluid
mixtures and in complex fluids, the transition in a uniaxial magnetic system, the
transition in a micellar system and the mixing transition in Coulombic systems [154,
283–293]. Again, we emphasize that the difference between the logarithmic behaviour
and the character of the non-zero critical exponent � in the range 0.077 – 0.12 cannot
be distinguished by experiments, especially, in the case of presetting the existence of
the non-zero critical exponent �. The putative exact critical exponent � is in very
good agreement with the experimental data [154, 284–286, 288, 290, 291, 294–296],
especially, which is exactly the same as determined in [283, 287, 292, 293]. Most of
the experimental data for �, � and � have somewhat larger deviations with the exact
values, remaindering us of the fact that only � is the most reliable critical exponent
for highly accurate determination of the critical exponents since it depends most
insensitively on the accurate location of the critical point. Nevertheless, it is a
common fact that experimental data are less accurate than the theoretical data,
which cannot serve as the only standard for judging the correctness of the exact
solutions [154, 213].

What follows is a checklist of what we found for the putative critical exponents
of the 3D Ising models by several criteria. (1) The putative exact critical exponents
satisfy the scaling laws and show universality behaviour. (2) The putative exact
critical exponents represent the behaviour of the system exactly at the critical region,
as the critical point is fixed exactly. (3) The putative exact critical exponents have
physical significances, which are correlated directly with the existence of the fourth
curled-up dimension. (4) The putative critical exponent � is exactly the same as the
conjecture of �¼ 5/4 [83, 95, 103, 107]. (5) Our putative exact solutions are in very
good agreements with the critical exponents � and � collected by Vicentini-Missoni
[268], which were derived by analysis of the good data in the critical region, believed
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to be available only for a few substances. (6) The putative exact critical exponents are
almost exactly equal to the critical indices �, �, � and � of real fluids. (7) The
putative exact critical exponents 
 and � coincide with experimental values for
the interfacial tension in the two phase fluids, within experimental error bars. (8) The
putative exact critical exponents satisfy the criterion that the critical behaviour
should change as a consequence of continued logic: the critical indices should vary
smoothly with dimensionality. All the putative exact critical exponents for the 3D
Ising lattice are located between those for the 2D and 4D (mean field) exact critical
exponents. The logarithmic behaviour of the specific heat in 3D verifies that all the
systems have the zero critical exponent �, regardless of their dimensions. (9) The
putative exact critical exponents are comparable to the approximation values and the
experimental data, if compared roughly. (10) The putative exact critical exponents
would be very close to the approximations and the experimental data if one agreed
with the existence of the zero critical exponent � and chose the critical exponent � as
the most reliable for a high-accurate determination of the critical exponents. (11) The
putative exact critical exponents satisfy the principles of simple, symmetry and
beauty with aesthetic appeal, which are all simple integers and fractions. They are
much simpler than those suggested by Fisher and Domb [103, 107]. Finally, we
emphasize that the results of the approximation methods and experiments cannot
serve as the only standard for judging the correctness of the putative exact solutions,
but the exact solution can serve for the evaluation of systematical errors in the
approximations and experiments.

8. Discussion

8.1. Scenario of the (3þ 1)-dimensional space framework

It is important to justify the correctness of the present procedure for deriving the
exact solution of the 3D simple orthorhombic Ising lattices. To do so, we need to
justify the validity of the two conjectures introduced in section 3. The main points of
the two conjectures are: the topologic problem of the 3D Ising system could be
solved by introducing an additional rotation in a (3þ 1)-dimensional space with a
curled-up dimension attached on the 3D space. The weight factors wx, wy and wz on
the eigenvectors represent the contributions of eiðtx�=nÞ, eiðty�=lÞand eiðtz�=oÞ in the 4D
space to the energy spectrum of the system. By introducing the two conjectures,
we succeeded in finding the maximum eigenvalues and the free energy, which are the
same as those of the original 3D Ising model. There should be a natural mechanism
for realizing this scenario.

Actually, introducing additional dimensions to our 3D physical system is not a
new concept [297–300]. The aim of the early model of Kaluza and Klein in
considering a five-dimensional space-time with one spatial extra dimension was to
unify electromagnetism and gravity [301, 302]. Evidence exists that convinces us that
we live in four noncompact space-dimensions [303]. Due to experimental constraints,
the standard model fields cannot propagate into bulk and are forced to lie on a wall
or 3-dimensional brane in higher dimensions [304–307]. Living in 4þ n noncompact
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dimensions is perfectly compatible with experimental gravity [303]. An effective
dimensional reduction occurs without the need to compact the fifth dimension, since
Kaluza–Klein excitations which have nonvanishing momentum in the fifth direction,
are suppressed near the brane. Thus, even though the Kaluza–Klein modes are light,
they almost decouple from matter fields, which are constrained to live on the wall
[303, 308]. On the other hand, there exist five anomaly-free supersymmetric
perturbative string theories, known as type-I, type-IIA, type-IIB, SO(32) heterotic
and E8�E8 heterotic theories [297, 309]. In all these string theories, in addition to
the four noncompact space-dimensions, more compact dimensions, for instance, a
compacted six-dimensional Calabi–Yau space, are needed. The four-dimensional
couplings are related to the string mass scale, to the dilation and to the structure of
the extra dimensions, mainly in the example of hetereotic theories. These five
perturbative string theories are all related to each other by various string dualities
(such as T-duality and S-duality) and the (10þ 1)-dimensional M superstring theory
could describe these five string theories together with 11-dimensional supergravity
[297,298,309]. Nevertheless, even though the compact dimensions may be too small
to detect directly, they still can have profound physical implications. In the present
case, introducing our two conjectures reveals profound physical significance for the
3D Ising system, which emerges automatically from the requirement of solving the
topological problem of the 3D Ising lattice. The putative exact results obtained by
our procedure are consistent with high-temperature expansions at/near infinite
temperature for the 3D Ising model. However, only the 4D space is sufficient for
solving our problem, while the radius of the additional curled-up 4th dimension is
presumed to be infinitesimal in the original 3D Ising lattice. Our 4D world remains
free for contacting with the (10þ 1)-dimensional world in a 6-dimensional compact
Calabi–Yau manifold plus 1-dimensional time.

Introducing the additional curled-up dimension indirectly supports that we might
live in four noncompact space-dimensions [303]. This conjecture is not inconsistent
with Kaluza and Klein’s five-dimensional spacetime and even the super-spring
theories [297, 298, 309]. The evidence for possible existence of dark matter or dark
energy in the cosmos is still a mystery to scientists [310, 311]. The additional term K000

of the energies is included in the expressions (29) and (49) for the eigenvalues and the
partition function of the simple orthorhombic Ising lattices. This extra energy term
seems to be related directly to the introduction of the additional curled-up
dimension, rather than interactions along the three crystallographic axes themselves.
Furthermore, the existence of four noncompact space-dimensions provides sufficient
space for the dark matter or dark energy, although we cannot see the fourth curled-
up dimension, which are communicating with or acting on the 3D physical world.

The scenario of the 3D Ising model at different temperatures is illustrated as
follows. (1) At infinite temperature, �¼ 0, wx¼ 1, and wy¼wz¼	

ffiffiffiffiffiffiffiffiffiffi
7=18
p

. There is
actually a state without any interactions, because any finite interactions lost their
actions in comparison with infinite temperature. The configurations are completely
random and extremely chaotic. One cannot distinguish any configurations from this
completely random phase. This phase could be defined as Phase 1, which is a
formless phase of complete randomness, representing a special state of non-being
(non-interaction). (2) As temperature infinitesimal deviates from infinite, the system
starts to experience extremely weak interactions. Deviations from complete
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randomness occur, which can be systematically taken into account by means of a
series expansion in K or �¼ tanh K. � becomes non-zero but infinitesimal and then
wx¼ 1, wy! 0 and wz! 0; all the configurations of the high-temperature series
emerge instantaneously and spontaneously from the complete randomness. The
system is still quite random, with strong quantum fluctuations, but less random than
at infinite temperature. This phase could be defined as Phase 2, which is a forming
phase of randomness with detailed structure, representing a special state of being. (3)
As temperature is lowered further, at finite temperatures above Tc (� becomes finite,
i.e. � 6¼ 0; wx¼ 1, wy¼wz¼ 0), a disordering phase emerges from the randomness,
which could be defined as Phase 3. (4) Exactly at the critical point, a disordering–
ordering transition occurs with infinite correlation length, with singularity of the free
energy, the specific heat, etc. This phase can be defined as Phase 4 or the critical
phase, which is the origin of singularities occurring at/near the critical point.
(5) Below the critical point, Phase 5 or the ordering phase emerges from the critical
phase. (6) At zero temperature, the system becomes completely ordered, which can
be defined as Phase 6. From the scenario above for 3D, there actually are five
detailed transformations between six phases, evolving from infinite to zero
temperature. The putative exact solution reveals the nature of nature in the disorder
and/or random states: The disordering and/or randomness may have different levels
and structures! The existence of Phase 2 is an intrinsic characteristic of our 3D world,
which does not exist in any models of other dimensions. For instance, in 2D, Phases
2 and 3 coincide with each other from temperature near infinite down to the critical
point Tc because the radius of the convergence of high-temperature expansions is the
critical point Tc. It is hard to understand the intricate difference between Phases 1
and 2. The basic difference between Phases 1 and 2 is whether the interactions are
experienced. Phase 1, without any clear configurations but more random/chaotic,
includes everything of Phase 2 and other low-temperature phases. Phase 2, with
infinite configurations as described by the high-temperature expansions and strong
quantum fluctuations but less random/chaotic than Phase 1, emerges from Phase 1.
These two phases are strange twin: Phase 1 is empty since nothing can be
distinguished from it, while Phase 2 is filled with all the high-temperature
configurations. Phase 3 emerges from the strong quantum fluctuations of Phase 2.
However, at the pregnant period of Phase 3, Phases 1 and 2 can transform each other
to be like a whole, to form a quantum vacuum-like state, on the infinitesimal
fluctuation of temperature at the infinite temperature. As long as temperature
approaches finite, Phase 3 with completely different configurations emerges
spontaneously, on the break-down of the symmetry and the annihilation of all
high-temperature configurations. It is understood that at/near infinite temperature
the Phases 1 and 2, representing empty (non-being) and full (being) are actually two-
fold degeneracy states if one neglects the infinitesimal deviation from infinite.
Spontaneous breaking down of the symmetry at/near infinite temperature is that a
new disorder phase emerges from the two-fold degeneracy of states, which differs
from the nature of spontaneous breaking down of the symmetry at the critical point
where one of two-fold degeneracy of order state emerges from the disorder phase.
Then, Phases 1 and 2 cannot return because no body can receive infinite thermal
energy to be back at infinite temperature. What happens at/near infinite temperature
of the 3D Ising model is analogous to the Big Bang at the origin and successive
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evolutions of our Universe. In the present case, we do not require a singularity point
as the origin of the Universe, but only interacting spins in the thermodynamic limit at
infinite temperature.

The states of Phases 1 and 2 are analogous to what Lao Zi described in his
famous book Dao De Jing [312]. Lao Zi was a great Chinese philosopher and thinker
who lived in c. 585–500 BC and once was the librarian and archivist of the royal
court of the Zhou Dynasty. Lao Zi’s thoughts have survived for more than two
thousand years and, recently, have become popular in the West. The philosophy of
Lao Zi is first about the universe, human life and politics. Without any models or
knowledge in modern physics, Lao Zi tried to understand the origin of our world and
describe the evolution of the world. His most famous rumination is ‘Non-being
is the beginning of the myriad things; Being, the mother of them’. Simply speaking,
‘Being was born out of Non-being; Everything was born out of Being’. Namely,
Phase 2, as temperature infinitesimal deviates from infinite, is born out of Phase 1 at
infinite temperature; all the phases (including disordering and ordering phases) at
finite temperature are born out of Phase 2. However, one might argue that these
ruminations seem to have parted from the domain of the Ising model in 3D, 4D, or
anything else. Our point of view is: On the top level, philosophies, sciences, arts and
even religions are all correlated, since all of us face a unique world. We should
respect the wisdom of the great philosopher and thinker Lao Zi. Interestingly, the
success in deriving the putative exact solution of the 3D Ising model for a purpose of
understanding the critical properties at the critical point helps in having a clear image
of the scenario of the physic world at/near infinite temperature.

One may argue that the 4-fold for lnZ is not, in principle, mathematically
impossible, but it may be physically impossible for ferromagnetic Ising models
because the Yang–Lee theorem proved rigorously the absence of zeroes for the
partition function, except on the imaginary magnetic field axis and together with
the existence of a gap in the zero distribution at high enough T (4Tc). This implies
that the high-temperature expansions of the Ising model converge and fully define
N�1lnZ in the thermodynamic limit, N!1, for all T4Tc, as demonstrated for the
1D and 2D models. However, this judgment based on the Yang–Lee Theorem is not
correct, because the Yang–Lee Theorem disregarded the special case of T¼1. It is
clearly seen after Theorem 3 in [9] that ‘The lattice gas cannot undergo more than
one phase transition, which must occur, if at all, at a value of the fugacity equal to ,
which according to equation (24), corresponds to z¼ 1. The isotherms in the I – H
diagram of the corresponding Ising model problem is smooth everywhere except
possibly at zero magnetic field (which occurs at z¼ 1). This is usually believed to be
true but was not proved.’ The most important issue here is that z¼ 1 corresponds
to the possibility of the phase transition. Due to this fact, the Yang–Lee
Theorem excluded the occurrence of the phase transition in the presence of magnetic
fields H, since H¼ 0 leads to z¼ 1 in accordance with their equation (23) of
z¼ exp(�2H/kBT). However, it is clear that Yang and Lee did not discuss the case of
infinite temperature. If T¼1, z will also equal 1, providing the possibility of the
occurrence of a phase transition at infinite temperature. Since there is no phase
transition at infinite temperature in other dimensions, it is believed here that it
should occur in a 3D system. Furthermore, the zero distribution as T!1 can be
quite different with that at finite temperature, as in the case where the zero
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distribution in the thermodynamic limit (volume V!1) differs from finite volume.
It could be true that the behaviour of the phase transition at/near infinite tempera-
ture differs from that at the critical point. Therefore, the mathematical structure of
the free energy equation (49) is not only mathematically possible, but also physically
possible. Nevertheless, all of the above facts suggest that for the 3D Ising lattices, the
high-temperature series expansion may not be a standard for judging the validity and
correctness of the putative exact solution at finite temperatures. This would imply
that the explicit form of the solutions of any 3D lattice theories may have less direct
relation with series expansion of perturbation theories.

It should be emphasized here that for a real 3D system, the 4-fold for lnZ should
hold for the whole temperature range, while the weight factors can vary in the range
[�1, 1]. Considering symmetry, for the simple cubic lattice (and also the simple
orthorhombic lattices close to it), the roles of the weight factors wx, wy and wz can be
interchanged without altering the eigenvalues (equation (29)) and the partition
function (equation (49)). The roles can interchange (and values) at any time from the
point of view of symmetry. In this way, the system is within the (3þ 1)-dimensional
space framework, even where any of the weights occasionally equal zero. These
lattices, as marked by 3D in figure 4, show the critical behaviours of a real 3D
system. With a further decrease in one or two of the three interactions K, K0 and K00,
the symmetry of the simple orthorhombic lattices decreases and, consequently, the
mechanism of role interchange of the weight factors wx, wy and wz is gradually
weakened so as to be prohibited in the 2D or 1D limit. Namely, wx¼ 1, wy� 0 and
wz� 0 revert the system to the Onsager 2D Ising model, which also corresponds to all
the simple orthorhombic lattices with their critical points lower than the silver
solution (as marked by 2D in figure 4). The variation in interchange with the
symmetry of the system is the origin for the 3D-to-2D crossover phenomenon, i.e. a
gradual crossover between the 3D and 2D behaviour, the 2D behaviour of some
simple orthorhombic lattices with less symmetry.

The (3þ 1)-dimensional scenario described above for the 3D Ising model might
be an intrinsic character of the 3D many-body interacting systems. The physics
beyond the (3þ 1)-dimensional scenario might be understood in depth as follows.
For a nonconservative system, the time-dependent Schrödinger equation is explicitly
expressed by i �hð@=@tÞ�ðr, tÞ ¼ Hðr, t, � i �hð@=@rÞÞ�ðr, tÞ. For the special case of a
conservation system, where H does not depend explicitly on t, a particular solution
is �nðr, tÞ ¼  nðrÞ expð�iEnt= �hÞ, where En is an eigenvalue and  n(r) is the
corresponding eigenfunction of the ordinary Schrödinger equation
Hðr, qÞ ðrÞ ¼ E ðrÞ. However, according to the relativity theory, any system
should be described within the spacetime framework, and spacetime is closely
associated by the Lorentz transformation. We might need to rethink the role of the
time on the non-relativistic quantum mechanism. Time should have two roles: one to
evaluate the movements of a particle within the framework of d-dimensional space;
the other to represent the whole system within the (dþ 1)-dimensional spacetime.
The first role of time is accounted for by the first-order derivative @=@t, but the
second role (the second-order derivative �@2=@t2, in accordance with r2 in
kinetic energies) is totally neglected in the non-relativistic quantum mechanism.
This term of �@2=@t2 is eliminated in the famous Schrödinger’s equation that plays
the role of Newton’s law and conservation of energy in classical mechanics. In other
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words, the time-dependent Schrödinger equation is of the first order in time but of
the second order with respect to the co-ordinates; hence, it is not consistent with
relativity. Actually, the Hamiltonian of the whole system (even in the case of non-
relativistic) in the (dþ 1)-dimensional spacetime is always associated with time, and
any spacetime system is always a nonconservative system taking into account the
time evolution. Whether the system is non-relativistic or relativistic, the equation for
the dynamic of the system should be consistent with relativity. It is our
understanding now that when we deal with a Hamiltonian of a non-relativistic
system, which does not depend explicitly on t, the second role of the time is actually
hidden. Although this role of the time could be neglected in other non-relativistic
systems, it should be taken into account for the 3D many-body interacting system
where the Hamiltonian of this non-relativistic system describes the interactions of the
spins only in 3D space (like accounting only for r2 in kinetic energies). The
introduction of the extra dimension in the present 3D Ising case might correspond to
the second role of time (like accounting for the effect of �@2=@t2), although its
appearance is required instantaneously by solving the topologic problem in the 3D
Ising system. This implies that the topologic problem in the 3D many-body
interacting system might automatically result in the conception of spacetime. The
introduction of the weights might correspond to a mechanism which make the
nonconservative system in spacetime conservative during the evolution of time. This
work may reveal how the second role of time could be associated physically with the
3D world (Alternatively, however, one could treat the additional dimension as a pure
mathematic structure or a boundary condition).

Furthermore, it is understood that a satisfactory quantum general relativistic
theory should take into account simultaneously and properly both the two roles (@=@t
and �@2=@t2) of time. However, it has been a challenge to properly consider the
second role of time, since it certainly causes the nonconservation (at the instant of the
evolution of the system, it should be held to be conservative). This might be the
origin of one of the difficulties in establishing a satisfactory quantum general
relativistic theory. In recent developments on the quantum gravity theory and to
study the background-independent formulation of the M theory, bulk dynamics were
described in terms of a causal histories framework, in which time evolution was
specified by giving amplitudes to certain local changes of states [313, 314]. In this
theory, a new kind of fusion between quantum theory and spacetime was achieved in
which states were identified with quantum geometries that represent space-like
surface and histories were both sequences of states in a Hilbert space and discrete
analogues of the causal structures of classical spacetimes. That is to say, to address
the issue of time evolution, one may attach a Hilbert space to each node of the causal
set graph in a theory of the causal evolution of the Penrose spin networks [313, 314].
In loop quantum gravity, the spin networks are the basic states for the spatial
quantum geometry states [313, 314]. On the other hand, it is known that the Ising
model can be employed to describe the Penrose spin networks used for the quantum
theory of gravity, since one could treat, exactly and equally, triangulations and their
dual spin networks. The two conjectures in the present work may shed light on a
satisfactory quantum theory of gravity by illustrating the topologic and causal
structures of spacetime. The four noncompact space-dimensions mentioned above
might be thought of as four spacetime dimensions. Namely, the fourth dimension of
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the four noncompact space-dimensions might behave as the time-like space-
dimension, representing the causal evolution of spin networks. This implies
the possibility that the five-dimensional spacetime with four noncompact
space-dimensions, mentioned above, may be mathematically treated as a (3þ 2)-
dimensional spacetime (i.e. three space-like space-dimensions, one time-like
space-dimension and one time dimension). The two time-related dimensions may
correspond, respectively, to the two roles of time: @=@t and �@2=@t2. The second
action of the time is hidden in the Hamiltonian of a 3D conservative system and this
additional time-like space-dimension is curled-up in the spacetime.

8.2. Approximation techniques

8.2.1. General arguments. Next, we need to discuss possible reasons for the
differences between the putative exact solution and the approximate values obtained
by various, widely accepted standard methods, and the differences between the
putative exact solution and experimental data. From the first glance, it seems very
difficult to imagine that, over years of experimentation by numerous independent
scientists using completely different techniques (Monte Carlo simulations, high- and
low-temperature expansions, renormalization group field theory and experiments),
the multitude of separate determinations of these critical exponents are wrong and all
yield (wrong) results that coincide. However, it is not a question of which results are
wrong or correct, but which are inexact or exact. Clearly, approximation results can
not be equal to exact results – there is no equalization between them. Strictly
speaking, it is of no significance to compare the putative exact solution with
approximation values and it makes no sense to contradict the putative exact solution
by well-accepted approximation values. The purpose of presenting the putative exact
solution here is not to criticize either the approximation or experimental techniques,
but to reveal the truth of nature. The results obtained by these techniques can be
used as valuable references if carefully considered, but not applied as the only
standard for judging the correctness of the putative exact solution. It is difficult to
gain any physical insight from approximation values, whereas the exact solution
would be physically significant. All of the putative exact critical exponents are
derived analytically by simply introducing our first conjecture, namely, the existence
of the extra dimension. The putative exact values emerge spontaneously as long as
this conjecture is introduced and they would be corrected if the conjecture were valid.
The putative critical exponent of � ¼ 0 illustrates the logarithmic singularity of the
specific heat at the critical point of the phase transition. The factor of three (or one
over three) in the putative critical exponent of �¼ 3/8 (or �¼ 2/3) emerges auto-
matically from this conjecture, which extends the dimensions in the wave-vector
space. The putative critical exponents of �¼ 0, �¼ 3/8, �¼ 5/4, �¼ 13/3, �¼ 1/8 and
�¼ 2/3, show the universality behaviour and satisfy the scaling laws. One would find
that these values even have some hidden intrinsic correlations with the critical
exponents of �¼ 0, �¼ 1/8, �¼ 7/4, �¼ 15, �¼ 1/4 and �¼ 1 of the 2D Ising model.
For instance, both the 2D and 3D Ising models have the critical exponent �¼ 0,
with the same logarithmic singularity of the specific heat at the critical point;
the critical exponent � of the 3D Ising model is exactly three times that of the 2D
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model; the critical exponent � of the 3D Ising model is exactly half that of the
2D model. The difference between the critical exponents � for the 2D and 3D Ising
lattices is twice that for the 1D and 2D (or 3D and 4D) Ising lattices (the same is true
for �). Most important, the putative critical point of the 3D simple cubic Ising
model is located exactly at the golden ratioxc ¼ e�2Kc ¼ ð

ffiffiffi
5
p
� 1Þ=2, while the

critical point of the 2D square Ising model is located exactly at the silver ratio
xc ¼ e�2Kc ¼

ffiffiffi
2
p
� 1. Realizing the fact that the golden and silver ratios are the two

most beautiful numbers in the mathematical world and that intrinsic similarities and
correlations exist between them, as revealed by the continued fractions and the
equations of x2þ x�1¼ 0 and x2þ 2x�1¼ 0, one would believe that no other
numbers are more reliable and suitable than the golden ratio for the critical point of
the 3D simple cubic Ising model. The continued efforts of scientists worldwide for
more than 60 years, since Onsager’s discovery of the exact solution of the 2D Ising
model in 1944, especially the advances in the renormalization group and Monte
Carlo simulations since Wilson’s discovery of the renormalization group in 1971,
contribute greatly to our understanding on the physical behaviour, in particular, the
critical behaviour of the 3D Ising model. Previous results of approximation and
experimental techniques provide significant information, which is quite helpful in
deriving the exact solution of the 3D Ising model. We would like to believe that the
finding of the putative exact solution would improve the development of these
techniques. In the following paragraphs, we shall explain why the renormalization
group theory and Monte Carlo simulations plus other approximation methods
cannot yield the exact solution or a solution close enough to the exact one.

Perturbation expansions have been used widely in astronomy and physics to
evaluate the effect of small changes in problems for which exact solutions are
available. However, for physical phenomena in which an interaction completely
changes the character of the solution, it is necessary to derive substantial numbers of
terms of such perturbation expansions and, if possible, to estimate the asymptotic
behaviour of the coefficients. As remarked by Domb [107], caution must be exercised
in using the method of series expansions if wrong conclusions are to be avoided;
physical insight into the nature of the expected solution should be invoked wherever
possible, which also provides consistency checks. Also methods of series analyses
should be tested wherever possible on exact closed form solutions.

The quantity F(z), whose critical behaviour as a function of z is to be studied,
must have a power series expansion about the origin z¼ 0, FðzÞ ¼

P1
n¼0 anz

n, with a
finite radius of convergence [315,316]. There are two criteria for the radius of
convergence for series expansions [315–317]. (1) If lim

n!1
an=anþ1
�� �� ¼ z0, or (2) if

lim
n!1

anj j
�1=n¼ z0, then the series converges for jz j5z0 and diverges for jzj4z0.

Correspondingly, there must be at least one singularity (non-analytic point) on the
circle of convergence jzj ¼ z0. Unfortunately, the sequence janj

�1/n often slowly
converges, so that its practical value in estimating z0 from the leading coefficients is
rather limited. If all the coefficients an are known exactly, in principle, one can
analytically continue the function across the z-plane as far as a natural boundary of
the function, beyond which it remains undefined. The nature of the coefficients is
determined by the singularities of F(z). The singularities nearest the origin will
dominate the behaviour for large n. If the dominant singularity is on the positive real
axis, the coefficients will eventually all have the same sign. Conversely, if the
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dominant singularity is on the negative real axis, the coefficients will eventually
alternate the sign. More irregular behaviour of the sign for large n indicates that the
dominant singularities are in the complex plane. Since the coefficients are assumed
real, the singularities must then occur in complex conjugate pairs [316].

One difficulty with series expansions is principal: if we are lucky, as with the 2D
Ising model, the critical point as a physical singularity point will be located exactly
on the circle of convergence. However, the most common case is that the existence of
a non-physical singularity point with z50 reduces the circle of convergence so that
one cannot reach the critical point that is a physical singularity point outside the
circle of convergence. It is believed that the 3D Ising model belongs to this category.
The Padé approximant method has been applied to overcome the difficulty of getting
more information outside the circle of convergence. Nevertheless, the radius of the
circle of convergence for high temperature expansions has not yet been proved
rigorously.

The other difficulty with series expansions is technical: usually, a finite number of
the coefficients an can be determined, a0, a1, . . . , an max. Typically, the calculation is,
in principle, straightforward; however, the increased labour necessary for calculating
each succeeding coefficient is large. Obviously, the computation of anþ1 involves at
least as much labour as the cumulative calculation of a0, a1, . . . , an. While there is, in
principle, no limit to the number of calculable coefficients; there is, in practice, a
rather sharp upper bound an max determined by such practical considerations as time,
patience and even computer capacity and funding [315]. At present, the upper bound
an max of terms in various approximations for the Ising model is around n¼ 26 (too
far from infinite). This is the main reason why almost all the approximation
techniques provide the (almost) same inexact results in the 3D Ising case.

All systematic methods for the determination of series coefficients are, at some
level, graphical or diagrammatic. A set of graphs of some given topological type is
associated with each coefficient. A numerical contribution corresponds to each graph
according to a well-defined rule. To calculate the required coefficient, one simply
sums all contributions. As a rule, the restrictive embeddings are best in low
dimensionality and for rather open lattice structure. For close-packed and in higher
dimensionality, the renormalization method seems preferable. In any given study,
there may be additional considerations favouring one method or another [315]. The
early expansions for magnetic systems, especially the Ising and Heisenberg models,
which have been important in the study of critical phenomena, were all of the weak
(high-temperature) and strong (low-temperature) embedding types. This may
partially explain why the high- and low-temperature expansions can give the exact
terms for the 2D Ising model, but not for the 3D Ising model. This may also explain
why the results of the high-temperature expansions are better and more regular than
those of the low-temperature expansions, but worse than those of the renormaliza-
tion group techniques.

The renormalization group concepts are concerned with the basic physics of
a critical point, namely, the long-wavelength fluctuations that are the cause of
critical singularities. The starting point in the renormalization group approach is to
realize that the most important fluctuations at the critical point do not have
a characteristic length. Instead, the important fluctuations have all wavelengths
ranging from the atomic spacing up to the correlation length; close to the critical
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point, the correlation length is much larger than the atomic spacing. Thus, the
important wavelengths near the critical point cover many decades [318]. However,
the renormalization group techniques are, in a certain sense, similar to the series
expansions because, during the renormalization group procedures, various
approximations, such as expansions, perturbations, linearizations, normalizations,
etc., are performed. In every procedure, the disadvantages, similar to those of low-
and high-temperature expansions, have not been removed completely. The starting
point for the " expansion is Landau’s mean field theory, which is exact apart from
logarithms in four dimension ("¼ 0). For the simplest (Ising-like) case, the critical
exponents move in the direction of the 2D values obtained by Onsager and, in three
dimensions, agree well with high-temperature calculations.

In principle, we can focus our attention only on those methods for which the
progressive inclusion of more coefficients leads to successive approximation schemes,
which appear to converge with reasonable regularity and speed. Extrapolation, in
principle, enables one to draw conclusions about the critical point behaviour and to
estimate the ‘errors’ involved. However, we have to stress that the estimated errors
are, unfortunately, in no sense rigorous and only represent a subjective assessment of
the rate of convergence of available numerical data. In principle, one could easily be
misled by the initial coefficients, for there is no mathematical reason why the
apparent asymptotic behaviour of the first 10–20 terms, say, should continue to
infinity [316]. Indeed, the position is less satisfactory for 3D lattices for which the
series converge more slowly; further information is needed to provide direct
estimates of critical exponents and amplitudes which can be considered as adequate
[107]. We would like to emphasize that, to serve as a standard of judging the
correctness of a putative exact solution, the necessary conditions for any
approximation results are as follows. (1) The approximation expansions must be
exact and convergent and (2) the variable for such expansions (even exact and
convergent ones) must be kept small. The accidental success of low- and high-
temperature expansions in 1D and/or 2D cannot be the basis for over-optimism of
their validity in 3D. It should be borne in mind that, when using approximation
techniques, the final state, determined by choosing an initiate state plus high-order
(perturbation or non-perturbation) corrections, can deviate far from the real state,
no matter how many correction terms used or how precision the techniques.

8.2.2. Low temperature expansions. For low-temperature expansions, the appro-
priate choice is to define the partition function such that the fully aligned spin-up state
is taken as having zero energy, since the low-temperature series is a perturbation
expansion about this state. It has been widely accepted that the exact solution of the
3D Ising model must be equal to the exact low-temperature expansions.
Unfortunately, the low-temperature expansions in 3D are divergent. It is our opinion
that nobody can find an exact solution with the close form, which diverges at/near
critical point. It is also our opinion that the requirement, where the exact expression
for spontaneous magnetization must be equal, term by term, to the so-called exact
low-temperature expansions, has, for a long time, reflected a pious hope.

Compared with high-temperature expansions, the situation at low temperatures
is far less satisfactory [107, 111]. As remarked by Domb [107], the low-temperature
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series in 3D alternated in sign so that spurious non-physical singularities were
masking the true critical behaviour. Note that in the low-temperature series, the
leading term is �2x6, while the coefficient for x8 term is zero. The first term with
positive coefficient is 14x12, which follows the term of �12x10 (with the same
coefficient with the present exact solution). The appearance of a plus sign in the low-
temperature series expansion appears incorrect [59] and appears to compensate the
incorrectness of other terms (especially the leading term). Since there is a masking
unphysical singularity, the conjecture of �¼ 5/16, based on the low-temperature
series expansion, is also questionable. Furthermore, the low-temperature expansions,
evaluated by systematically overturning spins from the ground state with all spins
‘up’, give the same fundamental leading term for the 2D triangular Ising lattice and
the 3D simple cubic lattice because it relates directly with the Ising model lattice of
coordination number q, regardless of the dimension. It is our belief that the
fundamental leading term of �2x6 (correct for the 2D triangular Ising lattice) has to
disappear for the 3D simple cubic Ising model. The leading term of our putative
exact series of the spontaneous magnetization, �6x8, reminds us that we live in four
noncompact space-dimensions (as discussion above), which are required intrinsically
for dealing with the topologic problem and the non-local behaviour of the 3D Ising
model [303]. The introduction of the fourth curled-up dimension realizes its
contribution to spontaneous magnetization, while removing, instantaneously, the
problem of the dominant singularity on the negative real axis. This contribution is
the real effect of the interacting many-body spins in the 3D lattice, which
spontaneously leads to the additional contribution of the free energy due to the
3D topologic problem. What the putative exact solution reveals is that the dominant
singularity is located on the positive real axis for both 2D and 3D. Furthermore, the
variable x¼ e�2K used for the low- temperature series expansion is small only at
extremely low temperatures, so that it fits well with the exact solution only in the
low-temperature range. As shown in figure 3b, the low-temperature series expansion,
with terms up to the 54th order of the simple cubic Ising model, fits numerically well
with the putative exact solution and oscillates around it up to T� 0.9Tc and then
deviates from it. If more terms are taken into account, the low-temperature
expansions would fit better with the putative exact solution. The putative exact
solution is actually the centre of the oscillation of the low-temperature expansions.
This could prove indirectly that the present putative exact solution for spontaneous
magnetization (and also free energy) might be correct and, furthermore, that the low-
temperature series expansion could not provide valuable information on the critical
region.

Next, one needs to ask why the low-temperature expansions give the same sign in
2D but the alternate sign in 3D. Why and how does the dominant singularity located
on the positive real axis for 2D change to the negative real axis for 3D? It is our
opinion that, in the correct answer, all the terms should have the same sign, as in 2D,
and in the wrong series they alternate in sign. Guttmann used the method of N-point
fits to locate unphysical singularities for various lattices [107, 319]. For the simple
cubic lattice, he found that there is one singularity on the negative real axis. These
singularities lie closer to the origin than the physical singularity, thus masking the
critical behaviour. Domb [107] and Guttmann [320] initiated a configurational
analysis of terms in the low temperature series, which showed how the spurious
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singularities arise. Starting from the empirical observation that Carley-tree

embeddings are far more numerous than those of any other group of connected

graphs, they estimated the Carley-tree contribution to the low temperature series and

found that, in a first approximation, the spurious singularities all lie on the circle

u¼ uc for q¼ 4, 6, 8 and 12. For q¼ 4, there is only one solution; for q¼ 6, there are

two at positive and negative axes; for q¼ 8, there are three in the complex u plane;

for q¼ 12, five. The distribution of singularities in the complex u plane for simple

cubic lattice was shown in figure 21 of Domb [107]. Higher-order approximations

move the spurious singularities nearer to the origin. Infinite-order approximations

would move the spurious singularities to the origin. From the existence of the non-

physical singularity points and its divergence, the radius of the circle of convergence

for low-temperature expansions could be zero. This is because there is no special

point between the zero and the critical point and, if the radius was not the critical

point, it is possible that it would be reduced to zero. In the following, we shall discuss

in detail the radius of the circle of convergence for low-temperature expansions.
The irregularity (i.e. the alternating sign) and divergence of the low-temperature

expansions in 3D are clearly associated with an unphysical singularity on the

negative real axis [107, 319, 320]. One would expect from the tendency of known

terms (up to 54th order (n¼ 27) [111, 238]) that the low-temperature series for

spontaneous magnetization should alter the signs and rapidly increase the

coefficients of the terms, up to infinite terms. This obviously leads to a stronger

oscillation and divergence of the spontaneous magnetization, especially, at the high-

temperature region (close to the critical point). Thus, it is crucial to find the radius of

the circle of convergence of the low-temperature series. From the coefficients mn of

the low-temperature series [111, 238], one can calculate the ratio of mnþ1/mn to

evaluate the circle of convergence in accordance with criterion (1) above [315–317].

From table 2, the calculated results from the last known terms are as follows:

�3.3479826 . . . for n¼ 21, �3.3621183 . . . for n¼ 22, �3.3626251 . . . for n¼ 23,

�3.3716472 . . . for n¼ 24, �3.3741696 . . . for n¼ 25, �3.3805110 . . . for n¼ 26 . . . .

Then, one can evaluate the difference �(nþ1,n)¼ (mnþ2/mnþ1�mnþ1/mn) between the

neighbouring ratios mnþ1/mn. It is seen from table 2 that, after the initial oscillation

between positive and negative values up to �(21,20), it becomes stable at small

negative values: �0.0141357 . . . for �(22,21), �0.0005068 . . . for �(23,22),

�0.0090221 . . . for �(24,23), �0.0025224 . . . for �(25,24), �0.0063414 . . . for

�(26,25) . . . . It is reasonable that all the higher-order terms would follow this

tendency, i.e. the higher-order terms mnþ1/mn would decrease monotonously, by

small finite values, with increasing n. Regarding the existence of infinite terms of the

exact low-temperature series, it seems reasonable to conclude that the ratio mnþ1/mn

would approach negative infinite as n becomes infinite, because small finite values

times infinite leads to infinite. For criterion (1), one finds that the radius of the

circle of convergence of the low-temperature series is zero. This means that the non-

physical singularity on the negative axis approaches zero, taking into account all of

the infinite terms of the low-temperature series. There are two possibilities for the

circle of convergence of the low-temperature series: a zero radius or a non-zero

radius. It is our argument that it would be unreasonable to predict the ratio mnþ1/mn

for n¼1 to be about �3.5 simply by extrapolating plots as a function of 1/n to zero
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(though we could not fully exclude this possibility), because there are infinite
uncalculated points for plots as a function of n.

One could also try to evaluate the circle of convergence in accordance with
criterion (2) above [315–317]. It is clear from table 2 that the value (mn)

�1/n for
magnetization of the 3D Ising model on a simple cubic lattice changes from 1 for
n¼ 0 to 0.352777263 . . . for n¼ 27. After the initial irregularity, the value (mn)

�1/n

decreases monotonously from 0.644137614 . . . for n¼ 6 to 0.352777263 . . . for n¼ 27.
It is reasonable to believe that this tendency is valid for all the terms with n427.
Regarding the existence of infinite terms for the low-temperature series, the value
(mn)

�1/n could decrease steadily down to zero as n approaches infinite. Once again,
one concludes that the radius of the circle of convergence of the low-temperature
series could be zero. In other words, either the zero or the non-zero radius is true for
the circle of convergence of the low-temperature series. Nevertheless, this needs to be
proved rigorously in the future.

If one agreed with the statement above for the zero radius of the circle of
convergence, one could discuss further the problems of analytic continuation and

Table 2. Low-temperature series coefficients mn, the ratio mnþ1/mn, the difference
�(nþ1,n)¼ (mnþ2/mnþ1�mnþ1/mn) between the neighbouring ratios mnþ1/mn and (mn)

�1/n for
magnetization of the three-dimensional Ising model on a simple cubic lattice. The values

for low-temperature series coefficients mn are taken from table VI of [238].

n mn mnþ1/mn

�(nþ1,n)

¼ (mnþ2/mnþ1�mnþ1/mn) (mn)
�1/n

0 1 0 – 1
1 0 – – 0
2 0 �1 1 0
3 �2 0 �1 0.793700525984099 . . .
4 0 �1 1 0
5 �12 �1.166666666666666 . . . �5.261904761904761 . . . 0.608364341893205 . . .
6 14 �6.428571428571428 . . . 4.295238095238095 . . . 0.644137614709094 . . .
7 �90 �2.133333333333333 . . . �1.991666666666666 . . . 0.525802320771714 . . .
8 192 �4.125 1.412878787878787 . . . 0.518307324814038 . . .
9 �792 �2.712121212121212 . . . �0.880057558828508 . . . 0.476342601582425. . .

10 2148 �3.592178770949720 . . . 0.577404276392955 . . . 0.464297742761535 . . .
11 �7716 �3.014774494556765 . . . �0.403332289038798 . . . 0.443200975243094 . . .
12 23262 �3.418106783595563 . . . 0.248094709946303 . . . 0.432626129059729 . . .
13 �79512 �3.170012073649260 . . . �0.188903079452852 . . . 0.419801165692409 . . .
14 252054 �3.358915153102113 . . . 0.106577644774961 . . . 0.411319244095722 . . .
15 �846628 �3.252337508327151 . . . �0.090946724218825 . . . 0.402550612240097 . . .
16 2753520 �3.343284232545977 . . . 0.044154987939316 . . . 0.395828431381549 . . .
17 �9205800 �3.299129244606661 . . . �0.045677618649371 . . . 0.389358196365129 . . .
18 30371124 �3.344806863256032 . . . 0.016620758351184 . . . 0.383979226771075 . . .
19 �101585544 �3.328186104904847 . . . �0.024389916227353 . . . 0.378955133136635 . . .
20 338095596 �3.352576021132200 . . . 0.004593441138821 . . . 0.374582966156199 . . .
21 �1133491188 �3.347982579993378 . . . �0.014135718971191 . . . 0.370541820614560 . . .
22 3794908752 �3.362118298964570 . . . �0.00050678373868 . . . 0.366928763492823 . . .
23 �12758932158 �3.362625082703257 . . . �0.009022115314501 . . . 0.363594050587216 . . .
24 42903505303 �3.371647198017758 . . . �0.00252237410530 . . . 0.360561596174962 . . .
25 �144655483440 �3.374169572123065 . . . �0.006341432681172 . . . 0.357755734601860 . . .
26 488092130664 �3.380511004804237 . . . 0.355174876597187 . . .
27 �1650000819068 0.352777263173715 . . .
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singularities of the low-temperature series. According to the principle of analytic
continuation [317], a function that is well defined inside its circle of convergence can
be continued well beyond its circle of convergence in all directions where singularities
are not encountered. The fact that the function is well defined within the circle of
convergence is sufficient to guarantee analytic continuation throughout the
remainder of the complex plane, unless such continuation is blocked by singularities.
In the present case, because the radius of the circle of convergence is zero,
singularities of the low-temperature series are encountered at the origin and, thus,
the function is not well defined within the circle of convergence. Therefore, the
function cannot be continued well beyond its circle of convergence in any direction,
because such continuation is blocked by singularities at the origin. This means that,
if one agreed with the zero radius of the circle of convergence, the so-called exact
low-temperature series could not serve as a standard for judging the correctness of
the putative exact solution of the 3D Ising model.

On the other hand, Padé approximants [96, 97] were successful as an effective
way of deriving information on the critical behaviour up to the critical point, with
very high precision. The Padé approximant method has been applied to overcome
difficulties to obtaining more information outside the circle of convergence [96, 97].
However, this method cannot prove/guarantee the continuation or the radius of the
circle of convergence of the function, since the Padé approximant can evaluate the
series even with the zero radius of the circle of convergence. For instance, for the
series F(z)¼ 1 �1! zþ 2! z2�3! z3þ 4! z4�5! z5þ 6! z6� . . . , the Padé approximant
can calculate, approximately, its value with very high precision; but the radius of the
circle of convergence of this series is zero.

The reason for the zero radius of the circle of convergence of the low-temperature
series might be that something is missing in the series as well as in the system. One
possibility is the lack of the extra dimension in the 3D Ising system, which is actually
hidden in accordance with the existence of the topologic problems. This extra
dimension should be introduced to properly account for the low-temperature series;
otherwise, the divergent low-temperature series with the zero radius of the circle of
convergence are obtained. The inconsistency of the non-relativistic quantum
mechanism with the relativity theory, due to the lack of information on the additional
dimension as well as the second action of time (i.e.�@2=@t2) as discussed above, might
be the origin of all the problems (irregularity, divergence, the existence of non-physical
singularity point and the zero radius of convergence, etc.) with the low-temperature
series expansions when the expansions are employed on the 3D Ising model.

8.2.3. High-temperature expansions. The high-temperature series expansion is an
exact expansion that uses the variable �¼ tanh K, which is small at high
temperatures. For the 2D Ising model, it is easy to write down every term of the
high-temperature series expansion by accounting for the loops in the 2D lattice.
If one took infinite terms of the high-temperature series expansion into account, one
would expect that it would fit exactly with the exact solution from infinite
temperature down to the critical point. However, for the 3D Ising model, it is a
challenge to write down every term of the high-temperature series expansion because
considering the polygons becomes tedious and extremely difficult plus the existence
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of crosses and knots in the 3D Ising lattice causes the well-known topologic problem.
For physical phenomena, where an interaction completely changes the character of
the solution, it is necessary to derive a substantial numbers of terms for such
perturbation expansions and, if possible, to estimate the asymptotic behaviour of the
coefficients. One could not obtain exact information at/near the critical point if one
failed to derive the infinite terms of the high-temperature series expansion. As
remarked by Domb [107], one should be cautious with series expansions if wrong
conclusions are to be avoided; physical insights into the nature of the expected
solution should be invoked wherever possible and used to provide consistency
checks; methods of series analyses should be tested wherever possible on exact closed
form solutions. As revealed in the Appendices and discussed below, the situation
with the 3D Ising model is even more pessimistic than indicated above: the putative
exact solution could fit well with the high-temperature series expansion only at/near
infinite temperature or, from another angle, the high-temperature series expansion
could fit well with the putative exact solution only at/near infinite temperature. Once
again, there are two possibilities: (1) the high-temperature series expansion may be
inexact at finite temperature or (2) the putative exact solution may be incorrect.
Considering the possibility of the occurrence of a phase transition at infinite
temperature, the high-temperature series expansion could be invalid at finite
temperatures.

In other words, it is our opinion that the (albeit exact) high-temperature series
cannot serve as an adequate basis for rejecting a putative exact solution of the 3D
Ising model. It is true that the high-temperature expansion of the Ising model
converges rigorously and the convergent expansions fully define N�1 ln Z in the
thermodynamic limit, N!1, for all T4Tc, as demonstrated for the 2D and 1D
models. Note that the convergence and exactness of the high-temperature expansion
series do not equate with validity at any temperature range without any conditions.
One has to keep in mind that the basis of the high-temperature expansion series is
that K or � have to be small, i.e. K or �! 0. Although the high-temperature
expansion series is valid for all T4Tc in the 2D and 1D models, it does not guarantee
that the same thing must happen in 3D. The critical point at 2D, located exactly on
the circle of convergence, does not guarantee that the same thing must happen in 3D.
Actually, in the 2D case, we are extremely lucky because both the high- and low-
temperature expansions are exact and convergent, and the critical point is located
exactly on the circles of convergence of both expansions. The free energy can be
described by a unique function of expansions for the whole temperature range.
However, we are not as fortunate in 3D because a non-physical singularity point
with z50 exists. The inexactness, irregularity (i.e. the alternating sign) and
divergence of the low-temperature expansions in 3D are clearly associated with an
unphysical singularity on the negative real axis [107, 319, 320]. This strongly suggests
the existence of such a non-physical singularity point for the high-temperature
expansions, since the parameters for the low- and high-temperature expansions are
related (the definition of �¼ tanh K¼ (1�x)/(1þ x) with x¼ e�2K). This non-
physical singularity point could greatly reduce the radius of the convergence of the
(still exact) high-temperature series. If the radius of the convergence of the high-
temperature series was decreased, it would be zero (or infinitesimal) – a point –
because there is no special point between the critical point and infinite temperature.
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This is due to the fact that the radius of the convergence of the low-temperature
series is also zero, according to the discussion above. Although � looks convergent as
K!Kc, the existence of this non-physical singularity makes such a convergence
meaningless. Therefore, it is concluded that the radius of the convergence of either
low- or high-temperature series expansions is zero and both series expansions could
be inexact at any finite temperatures. The claim that the high-temperature expansion
series is valid for all T4Tc in 3D has not yet been proved rigorously. The radius of
the convergence of the high-temperature series is the critical temperature of the 2D
Ising model and was proved to be true by Onsager’s exact solution. Note that the
Onsager exact solution served as the standard for judging the validity of high-
temperature series in 2D; not inversely. Only the exact solution can serve as the
standard for judging its validity in 3D. It is possible that for 3D, the high-
temperature expansion series is rigorously valid only at its very high temperature
limit. The radius z0 of convergence may not be finite but infinitesimal, i.e. z0! 0.
The non-physical singularity point could be located on the circle of convergence with
its infinitesimal radius z0 (being a point at infinite temperature). The physical
singularity point, i.e. the critical point, which is our main interest, could be located
outside the circle of convergence for the 3D Ising model. This could be why the high-
temperature expansion series cannot exactly locate the critical point of the 3D Ising
model, which has displayed results no better than with renormalization group
techniques. The scenario is that all the configurations used for deriving the high-
temperature expansion series (of infinite terms) exist only near infinite temperature
(i.e. K or �! 0) in a random fashion, although it is less random than the infinite-
temperature state, and many (actually infinite) configurations, as a kind of
microstructure, have already emerged. The information from these configurations
can be maintained in the exact function and weights in an intriguing way, as revealed
in this paper.

The main reason for the zero radius of convergence of the series expansions could
be that, in accounting for the terms of these series expansions, the normal procedure
does not consider the important hidden intrinsic property of the 3D Ising model.
In other words, the interacting spins at the thermodynamic limit in the three
dimensions intrinsically hide the topologic knots of interaction, which introduce a
comparatively higher energy than the simple sum of the normal loops as calculated in
other dimensional models. This intrinsic property is a cooperative non-local
phenomenon, which cannot be described properly by these approximations, taking
into account only the local environments. The non-local behaviour exists especially
and only in the 3D many-body interacting spin system, which can be seen clearly in
its complex boundary condition, its topologic problem, etc. The non-local behaviour
could be related to the additional dimension, as discussed above. The lack of
information on the additional dimension in the non-relativistic quantum mechanism
(which is inconsistent with the relativity theory) might be the origin of all the
problems (the existence of non-physical singularity point and the zero radius of
convergence, etc.) of the series expansions when these are employed on the 3D Ising
model, described within the framework of the non-relativistic quantum mechanism.

The difference between low- and high-temperature series expansions is mainly
due to their starting states. The high-temperature series expansion starts from
the highly random state, where the nonlocal property is negligible, but the
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low-temperature series expansion initiates from the completely order state, where the
nonlocal property is extremely strong. One could find a mechanism of spontaneously
and simultaneously knowing all the high-temperature configurations at a tempera-
ture that infinitesimally deviates from infinite, whereas it is impossible to find a
mechanism of spontaneously knowing all the low-temperature configurations at a
temperature that infinitesimally deviates from zero, owing to the high thermal energy
cost up to the critical point. Therefore, the high-temperature series expansions can be
exact at a temperature infinitesimally deviating from infinite, whereas the low-
temperature series expansions in the previous form cannot be exact at a temperature
infinitesimally deviating from zero. The situation at low temperatures is worse than
at high temperatures, which may explain why the low-temperature series expansion is
not more reliable than the high-temperature series expansion for predicting the
critical point and the critical exponents.

One may ask why the high-temperature expansions can be valid for all T4Tc in
the 2D and 1D models, but only for T!1 in the 3D model. This can be ascribed to
differences between the 3D and the other models. The differences between the 2D and
3D Ising models are evident: topologic, symmetric, dimensionality, singularity, . . .
The following are several general points on this issue. (1) Types of interactions: it is
known that the 3D is especially designed for validating the law that the strength of the
interaction is inversely proportional to the square of the distance. (2) Types of
topologic: the high-level life, such as humans, fish, etc., cannot live in 2D since a 2D
gastrointestinal system can divide the body of a 2D fish to separated two parts.
Another example is the connection between different points in lattices. The number of
direct connections for communication between two lattice points without any cross to
other connections in 1D is two; in 2D it is four; in 3D it is infinite. This makes neural
networks in high-level life possible only in 3D. Next, let us focus on the Ising model
where spins with interactions are located on each lattice point. The intrinsic difference
between the 3D and 2D Ising models can be seen clearly by comparing equations (15a)
and (15b) with equation (14) in Kaufman’s paper [17]. The end factors in equations
(15a) and (15b) originate from the boundary condition that many of the bonds are
nonplanar and that these bonds cross over those in other planes. This boundary
condition in 3D is much more complicated than in the 2D case. To deal with this
complex boundary condition, one needs to introduce Conjecture 1 to open the
topologic knots. As discussed above, this topologic problem hides another related
intrinsic property – all the elements in matrix V are correlated intimately, so that the
3D Ising model has an intrinsic nonlocal property, whereas the 2D model lacks such
nonlocal behaviour. This nonlocal property can also be seen from the form of the
additional rotation shown in equation (18), where the elements K000 of the additional
rotation matrix is a mixture of K, K0 and K00. This nonlocal property is an intrinsic
property of the 3D Ising model, with the result that any approximation techniques
taking into account the local property only cannot be correct for the 3D Ising model,
though these approximates work well for other 2D or 1D models. The only exception
is the application of the high-temperature expansions at/near infinite temperature,
because there is no interaction at infinite temperature and the interaction is
comparatively weak at a temperature infinitesimally deviating from infinite in
comparison with temperature. Only at this extremely high-temperature limit can
the effect of the nonlocal property be neglected. This also explains why the
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low-temperature expansions diverge in 3D, since such nonlocal property is extremely
strong at low temperatures.

Furthermore, a serious problem with analysis of the 3D Ising model is the
presence of confluent singularities, which are extremely weak or non-existent in
the 2D model [111]. Both field theory and high-temperature series analysis suggest a
value for the confluent exponent not very different from 0.5. Certainly, the 2D and
3D Ising models are intrinsically different, otherwise the exact solution of the 3D
Ising model would have been found immediately after Onsager’s discovery. In any
case, as with Kramers and Wannier, one can easily locate the critical point. If the
critical temperature were, as hoped, the radius of the convergence of the high-
temperature series, one would have located the critical point (almost) exactly by this
expansion. The well-known group of critical exponents �¼ 1/8, �¼ 5/16, �¼ 5/4,
�¼ 5, �¼ 0 and �¼ 5/8, obtained by the high-temperature expansion and suggested
by Fisher [103] and Domb [107], gives the value of �¼ 0, which is the same as
predicted by the main field theory and certainly not relevant. The critical exponent �
denotes the deviation from the Ornstein–Zernike behaviour, which cannot be zero.
All these indicate that the success and optimism of the high-temperature series in
other dimensions cannot be simply transplanted to the 3D case. For 4D, it is well
known that the mean field theory, which is believed to be the zero-order
approximation, can well describe the behaviour. Other approximations, better
than the mean field theory, can give good results because they just add higher-order
perturbation terms that approach infinitesimal for 4D. To further question why the
3D differs with other dimensions is analogous to asking why we are living in a 3D
world. This is beyond the scope of the present paper. All the analyses above indicate
that both the low- and high-temperature series expansions may not give the exact
information at the critical region of the 3D Ising model.

8.2.4. Monte Carlo simulations. Why can Monte Carlo simulations not provide the
exact solution? First, most simulations are limited by the size effects of the model and
the power of the computers. It is not possible to perform calculations and
simulations on a lattice with the number of spins or atoms, N!1, since the number
of configurations of the Ising model increases as 2N. In the finite system that is
simulated, the difficulty is that there is no sharp transition between zero and non-
zero magnetization or a sharp peak in the specific heat. Therefore, the critical point
cannot be located precisely [212]. Furthermore, the absence of a sharp peak in the
specific heat hinders an analytical understanding of its singularity at the critical
point. Monte Carlo simulations are powerful techniques for numerical calculations,
which numerically evaluate canonical thermal averages of some observable A by an
approximate one, where M states {x
} are selected by importance-sampling process
[213]. The importance-sampling process consists of the construction of a Markov
chain of states (x1!x2!� � � x
! x
þ1!� � �), where a suitable choice of transition
probability W (x
!x
þ1) ensures that, for large enough 
, states x
 are selected
according to the canonical equilibrium probabilities, Peq(x
) / exp{�H(x
)/kBT}.
The limitations of Monte Carlo simulations are as follows [213]. (1) Only in the limit
M!1 we can expect to obtain an exact result, while for finite M a ‘statistical error’
is expected. The estimation of this error is a very nontrivial matter, since it depends
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sensitively on the precise choice of W and subsequent generated states are more or
less correlated. It is expected that the ‘correlation time’ diverges in the
thermodynamic limit at a second-order phase transition [321]. (2) While the
importance-sampling method guarantees that, for 
!1, the states are selected
according to Peq(x
), but for choices of 
 that are not large enough there is still some
‘memory’ of the (arbitrary) initial state with which the Markov chain was started.
The non-equilibrium relaxation time for the system, which relaxed from the initial
state towards the correct thermal equilibrium, is divergent at a second-order phase
transition in the thermodynamic limit [322]. (3) For realization of the Markov chain,
(pseudo-) random numbers are used both for constructing a trail state x 0
 from a
given state x
 and for the decision of whether or not to accept the trial configuration
as a new configuration. For instance, in the Metropolis algorithm, this is done if the
transition probability W exceeds a random number that is uniformly distributed in
the interval from zero to one [193–202]. Evidently, it is necessary to carefully test the
quality of the random numbers since bad random numbers cause systematic errors.
However, this is again a nontrivial matter, since there is no unique way of testing
random-number generators and there is no absolute guarantee that a random-
number generator that has passed all the standard tests does not yield random
numbers leading to systematic errors in a particular application [234, 323–326] (4)
Monte Carlo methods apply to a system of finite size only and the results of
calculations near a phase transition are affected by finite size and boundaries. The
finite size of the simulated lattice, typically a (hyper-)cubic lattice of linear dimension
L with periodic boundary conditions in all lattice directions, causes a systematic
rounding and shifting of the critical singularities. This is because singularities of the
free energy can only develop in the thermodynamic limit L!1. This remark is
particularly obvious for the correlation length �, which cannot diverge towards
infinite in a finite simulation box, so that serious finite-size effects must be expected
when the correlation length � has grown to a size comparable to L [235, 327–329].
Therefore, the results obtained by Monte Carlo simulations depend sensitively on the
numbers of Monte Carlo steps, the linear dimension L of the simulation box with
periodic boundary conditions, the non-equilibrium relaxation time of the system and
the quality of the random-number generators, etc. Actually, the correlation length
diverges to infinite at the critical point of a second-order phase transition; the
physical fluctuations in the magnetization become very large near the critical point.
These fluctuations cannot be entirely suppressed by the importance sampling. To
obtain good averages, the Monte Carlo simulations should be run for an inordinately
long time and, unfortunately, for infinite time to reach the exact solution. Most
importantly, any approximation method cannot prove exact information at/near the
critical point, since whenever the thermodynamic functions have an essential
singularity it is difficult to perform any computation by successive approximation
because the convergence of approximation by analytic functions in such cases is
notoriously slow [13]. Even if we continued to work with the smallest lattices
possible, the inclusion of longer-range interactions/correlations would force us to
bigger systems and there is a limit to what could be done even with computers
many times faster than those currently available. Nowadays, calculations of the
Ising models have been performed on lattice sizes of L¼ 256–5888, far from infinite.
To date, most 3D simulations with a lattice size lager than 4800 have been short runs,
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which could not produce well-equilibrated configurations at the critical point [184,
185, 213]. Normally, increasing the lattice sizes would lower the estimates of the
critical point [170, 212, 213], which would push the values in the Binder and Luijten
review [213] towards our putative exact solution. For the 2D Ising model, Monte
Carlo simulations give much better results [213], not only because much larger lattice
sizes can be dealt with but also because there is no topologic problem of crosses and
knots. Although the combination of Monte Carlo simulations and renormalization
group techniques reduces calculation time and gives better results by allowing a
much larger study than is possible by direct summation methods [178, 179, 330], the
essential difficulties in the Monte Carlo simulations are not removed. In utilizing
Monte Carlo simulations, the accuracy of the calculations can be improved by
increasing either the lattice size or the running time of importance sampling, but it is
not always explicitly practical to count the lattice states or to determine the critical
parameters with more than a handful of lattice sites, on any computer no matter how
powerful [21]. Fortunately and unfortunately, this combination contains both the
advantages and disadvantages of the renormalization group techniques.

8.2.5. Renormalization group techniques. Why can the renormalization group
techniques not give the exact solution? The renormalization group techniques
developed by Wilson and others divide roughly into two categories [141–144, 149,
152–160, 192–202, 208–225]. (1) The real-space renormalization group techniques,
close in spirit to the original idea of Kadanoff [210, 243, 331], which allow one to
simplify calculations of the critical exponents in the critical regime without ever
working out the partition function. (2) The field theoretical or k-space renormaliza-
tion group techniques, as developed by pursuing the analogy between statistical
mechanics and quantum field theory. In the former case, we are actually concerned
with the construction of new models from old by averaging dynamical variables of
the old model to form the block variable of the new model. In the latter case, we are
actually concerned with changing the parameters of the Landau–Ginzburg model to
experimentally more accessible quantities. Superficially, it seems that there is no
connection between the categories of the renormalization group techniques.
However, at a deeper level, there is a close connection, because the basic idea is
the same and because there are connections between � and a set of block variables
[212]. It is believed that in both categories, performing the renormalization reduces
the degrees of freedom while losing the information of the system.

For the real-space renormalization techniques, the final results depend
sensitively on how to divide Kadanoff blocks, define the effective Hamiltonian,
determine the details of the block variables and calculate approximately the partial
trace [141–144, 149, 152–160, 208–225]. The larger the Kadanoff blocks, the more
accurate the calculations, but the more complicated the procedure. The cumulant
expansion during the calculation of the partial trace also causes uncertainty in the
results. The more terms remain, the more accurate the final results. The final
results would approach the exact solution if and only if the size of the Kadanoff
blocks were chosen to be infinite and the infinite terms of the expansion were
retained. This is impossible, because many more variables would emerge with the
increasing size of the Kadanoff blocks and take into account more terms of the
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expansion, which make the calculations extremely difficult. Calculating the critical
exponent � relates the divergence of the correlation length (�!1) to the
temperature, while the calculation of the critical exponents � and � must work in
the limit of n!1, where n stands for the number of iterations of the
renormalization transformation. For the calculation of the remaining three
(T 6¼Tc) critical exponents �, � and �, difficulties arise from the fact that, in the
regime very close to the critical fixed point, many measurable quantities change
drastically in response, not only to small temperature variations near Tc, but also
small changes in the parameters appearing in the effective Hamiltonian,
remembering that the effective Hamiltonian is temperature-dependent. The critical
exponent � proves considerably harder to calculate than the others, because the
specific heat is not simply related to the block variables [22]. Moreover, when we
renormalize, we know very little about how T and Tc vary, but skip the problem by
eliminating T–Tc in favor of the correlation length. All these difficulties imply that
it is hard to locate exactly the critical point by real-space renormalization
techniques. One should note that the values of the critical point, well-established in
two recent review articles [154, 213], vary with a very large deviation. Furthermore,
a scientist, not knowing all values of the exact solutions of the critical point and
the critical exponents that are strongly correlated, may choose one of these
parameters (though an inexact one) as the standard to determine others. This
causes serious problems for the accuracy of the calculations, since the high-
accurate critical exponents must be determined only at the very narrow
temperature interval near to the critical point and the high-accurate critical point
can be determined only when the critical exponents used during the calculations are
exact.

For the field theoretical or k-space renormalization techniques [141–144, 149,
152–160, 208–225], as one follows the original works [126, 127, 142], one easily
discovers that a series of approximations could cause serious problems for the
renormalization group calculations. In the first step, high-order contributions to the
initial Hamiltonian, which are proportional to j s

!
j
6, j s
!
j
8, etc., are neglected for

adoption of a continuous local variable or spin s
!

with a magnitude constrained by a
weight factor for each individual variable s

!

x. This point is questionable, especially
for the spin 1/2 Ising models where the strong constraint s¼	 1 might still play a
special role. These high-order contributions could seriously affect the construction of
the reduced Hamiltonian in momentum space for the spin 1/2 Ising models [143]. The
high momentum cut-off during the definition of a renormalization group by partial
trace over high momentum variables may also cause problems, since, at the critical
point, all spin components with long and short wavelengths (or low and high
momentums) become comparably dominant. In the final and crucial computational
step of realizing the renormalizing group operator by a perturbation expansion of
treating the coupling constant u (in field theoretic language) as a small parameter,
which leads to a graphical formulation full of Feynman type-integrals, the biggest
problem is that the small parameter is not, in fact, a coupling constant, but rather the
dimensional difference 2¼ 4 � d [143]. For the 3D Ising model, 2¼ 1, cannot be
treated as a small parameter. It seems that the series expansion for n¼ 1 and d¼ 3 at
order 22 gives the best match of the critical exponent � to the exact solution.
Furthermore, the introduction of Feynman graphical techniques, which were
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originally developed for quantum electrodynamics, causes other serious problems of
approximations, because iterating a set of non-linear recursion relations (obtained by
the linearization of leading order (or even several leading orders) in the coupling
constant) many times, causes uncertainty in the final results and, as no one knows
how to account for the contributions of all the infinite Feynman graphs, becoming
important in the same order at the critical point of the second-order phase transition.

Although the renormalization group theory is described in mathematical terms, it
is not rigorous. Besides, we have to make several assumptions. We deal with formal
series expansions without knowing anything about their convergence or divergence
and the term limit is used without having defined a metric [236]. A serious problem
with the renormalization group transformation in real-space or otherwise is that
there is no guarantee that they will exhibit fixed points [149]. For some
renormalization group transformations, iteration of a critical point does not lead
to a fixed point, presumably yielding instead interactions with increasingly long-
range forces [236, 332]. There is no known principle for avoiding this possibility and
a simple approximation to a transformation can misleadingly give a fixed point, even
when the full transformation cannot [144–146]. Nothing is known yet about how the
absence of a fixed point would be manifested in Monte Carlo renormalization group
computations. Thus, it can be concluded that the high-precision calculations of both
the real-space and field theory renormalization group techniques cannot give the
exact solution owing to the existence of systematical errors.

We still need to further explain why the high-precision calculations of the
renormalization group theory and Monte Carlo simulations cannot give the exact
solutions for the critical point and the critical exponents (except for �). The key factor
is that serious systematical errors exist in these techniques, caused by the
disadvantages discussed above. These systematical errors are related directly to the
initial physical concepts/views and the neglect of important factors during
procedures, etc. For instance, linearization during calculations is not very reliable
since non-linear terms could become dominant near/at the critical point. Therefore,
the systematical errors of the renormalization group theory and Monte Carlo
simulations are intrinsic and cannot be removed by efforts to improve, technically, the
precision. This means that estimates of the critical point and the critical exponents by
various theories and experimental techniques can become more precise but not
sufficiently accurate. The situation is similar to that of everyone using a gun of the
same kind with very high ‘so-called accuracy’ (actually, only high precision) and high
systematic error, which can shoot 9 points with high precision but never shoot exactly
10 points on the target. However, the renormalization group theory andMonte Carlo
simulations are still powerful techniques for the study of critical phenomena as long as
the simulations focus only on the critical exponent � and one keeps in mind that there
are systematic errors for the critical point and other critical exponents.

8.2.6. Experimental techniques. Why can experimental techniques not give the
exact solution? First of all, the critical regions are very narrow,
�T=Tc ¼ ðT� TcÞ=Tc910�2 � 10�1 [105]. The temperature difference �T can be
measured much more accurately than the temperature T itself. The major
experimental uncertainty is the relative location of Tc itself [105]. For instance, in
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specific heat measurement, a rounded peak is often observed, making the precise
location of the critical point uncertain. In resonance experiments, the lines of both
the order and disorder phases often overlap in a small temperature region close to the
critical point. Measurements in applied magnetic field require the extrapolation to
zero field to fix the critical point, introducing further uncertainty. The determina-
tions of critical exponents for bulk even involve extrapolations to zero internal field
values. The choice of the critical region and the critical point are interdependent and
affect the evaluation of the critical exponents. Furthermore, the domains often exist
in ferromagnets and the domain walls serve to break up the long-range correlations
so essential to the critical behaviour. For experiments, it is essential to ensure that the
domains should be larger than the theoretical coherence length, but it is infinite at
the critical point. The existence of long-range interactions and magnetic anisotropy
in the real materials may affect the critical behaviour. Impurities in the magnet
sample may seriously affect the value of the critical temperature; thus, good
measurements require the use of single crystals of extreme purity and well-defined
geometry. Last but not least, the spontaneous magnetostriction alters the lattice
parameters of the materials at the critical regime. This effect should be included in
the analysis of precise data, to compare with a theory that has fixed lattice constants.
In every case, it is necessary to be convinced either that the transition is second order
or that the latent heat in a first-order transition is too small to change the critical
behaviour under study, since the connection between the critical effects and lattice
size and shape can in some cases make the transition first-order [105]. It is well-
known that the accuracy of experiments is less than that of theories. As stated by
Vicentini-Missoni [268], good data in the critical region are available only for a few
substances. All the above factors block the accurate determination of critical
exponents in real materials, though the accuracy of the experimental techniques has
improved greatly over the past decades.

8.2.7. More general discussions. We still need to further explain why, over the
years, the multitude of separate determinations of these critical exponents by various
independent scientists using completely different techniques (Monte Carlo simula-
tions, high- and low-temperature expansions, renormalization group field theory and
experiments) coincide. Superficially, all these different techniques are independent.
At a deeper level, they are related and connected closely. Nowadays, it is believed
that the field theory renormalization group technique gives the most accurate
estimates among all these approximation techniques [154, 212, 213]. The coincidence
in the results of the Gell–Mann and Low approach with the Kadanoff–Wilson
method seems, at first sight, accidental. As mentioned above, the field-theory
renormalization group technique is connected with the real-space renormalization
group technique, since they share the general idea of the renormalization group and
there are connections between the variables [212]. Di Castro and Jona-Lasinio [333]
made an effort to underline the deep conceptual unity which is implicit in various
aspects of the renormalization group idea by explicitly making a connection between
the Kadanoff–Wilson and the Gell–Mann–Low approaches. With the exception of
the spaces where the renormalization group techniques are performed, the concepts,
as well as the processes, of the two techniques are very similar and closely related.
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For instance, the model Hamiltonian, describing either a relativistic field-theory
model in d – 1 space and one time dimension or a classic ferromagnet in d-space
dimension of Ising-type for n¼ 1, is actually the same [333, 334]. Dividing the
Kadanoff blocks in real-space corresponds to cutting off the momentums in k-space;
both methods lead to an asymptotically scaling invariant theory with equal critical
exponents, at least in the first few orders in the "-expansion. The Monte Carlo
technique and its related renormalization group techniques share the disadvantages
of the Monte Carlo process. Even the low- and high-temperature series expansions
are related closely to the field theories [142]. Studying the possible phases of
interacting constituents in a high or low temperature equalizes, in field theoretic
language, to study strongly cut-off field theories, as what the field theory
renormalization technique does for the critical point.142 It is well-known that the
low-temperature expansions have the lowest precision among all the theoretical
techniques, while the accuracy of experiments is lower than that of theories.
Although separate determinations of these critical exponents were carried out
independently, during the processes of determination and publication, scientists like
to refer to the published or well-established data. For instance, a scientist working on
the Monte Carlo technique may proceed in steps, using the values of the critical
exponents from the field-theory renormalization as initial guesses, to obtain a good
first estimate of his own calculation and avoid ambiguities in the fitting procedure
[213]. A scientist, who is doing experiments, may also be asked to compare
(or match) with well-established theoretical values. Almost all scientists in the field
have pre-set the existence of a non-zero value of the critical exponent � for fitting the
experimental data or calculating the critical parameters. Almost all scientists in the
field use the scaling laws to determine other retained critical exponents from part of
the calculated critical exponents, in most cases, including the critical exponent � (pre-
set already to be non-zero). At the deepest level, all these theoretical techniques have
the same problem of neglecting the high-order terms, the size effects and the knot
effects, etc. Evidently, all these terms/effects, which might be negligible in other
cases, become comparable with the leading terms at/near the critical point of the
second-order phase transition in the thermodynamic limit for the 3D case. Such
neglect results in systematical errors. Furthermore, it could be that, typically, these
approximation calculations are, in principle, straightforward; however, the increased
labour necessary for calculating each succeeding coefficient is large [315]. Normally,
computation of the coefficient anþ1 in series methods should involve at least as much
labour as the cumulative calculation of a0, a1, . . . ,an. Thus, while there is, in
principle, no limit to the number of calculable coefficients, in practice, there is a
sharp upper boundary an max [315]. Typically, the first few coefficients are trivial and
no special methodology is necessary. However, in higher orders, the bookkeeping is
extremely involved and scrupulous accuracy is necessary in determining the
coefficients, as extrapolative analysis of the computed coefficients makes critical-
point behaviour exceedingly sensitive to tiny fractional changes in the last
few available coefficients. For these reasons, it is of paramount importance to
have a well-defined, systematic procedure for computing coefficients, which
incorporates as many short cuts as possible and minimizes the opportunity for
careless error. However, the position is less satisfactory for 3D lattices where the
series converge more slowly than those of 2D lattices [107]. This is true, not only for
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the series methods, such low- and high-temperature series expansions, but also for
the renormalization group techniques that actually involve the spirit of the series
methods. The existence of the sharp upper boundary in determining the coefficients
could be why, over years of experimentation by various independent scientists using
completely different techniques, the multitude of separate determinations of the
critical exponents coincide.

After six decades, since Onsager’s solution to the 2D Ising model was reported in
1944, the exact calculation of properties of the 3D version has proved hopelessly
difficult. Onsager himself realized immediately that the 3D Ising model cannot be
solved exactly using only the procedure he developed for the 2D version. The
application of the algebraic method to the 3D problem is seriously hindered at an
early stage because the operators of interest generate a large Lie algebra, which is
very difficult to deal with [59]. It seems impossible to locate exactly the critical point
of the 3D Ising model simply by the dual transformation, which was used by
Kramers and Wannier [14, 15] to locate exactly the critical point of the 2D Ising
model. This is because the symmetry for the dual transformation of the 2D Ising
model is broken down by the introduction of the third dimension. The combinatorial
method of counting the closed graph, developed by Kac and Ward [60], cannot be
adapted in any obvious way to the 3D problem, since it introduces some problems in
topology that have not been rigorously solved. Actually, their success to simplify the
procedure to re-derive the Onsager results was, in large measure, due to knowing the
answer and they were, in fact, guided by this knowledge [104, 335]. Feynman
provided the key technical formulation for the needed missing lemma [104, 335], the
so-called Feynman’s conjecture, which eventually was proved by Sherman [240, 241],
making the Kac–Ward method completely rigorous. It has been rather puzzling that
the two methods for finding the exact solutions for the Ising problem, namely the
algebraic method of Onsager and the combinatorial method employing Pfaffians,
have exactly the same range of application, although they appear so different in
approach. As remarked by Hurst [336], problems which yield to one method yield to
the other, while problems which are not tractable by one approach also fail to be
exactly solved by the other, although the reasons for this failure appear to have
completely different mathematic origins. On the one hand, Ising problems, which
cannot be solved by the Pfaffian method, are characterized by the appearance of
crossed bonds that produce unwanted negative signs in the combinatorial generating
functions. Such crossed bonds are usually manifestations of the topological structure
of the lattice being investigated, i.e. the 3D simple cubic lattice. On the other hand,
the Onsager approach breaks down because the Lie algebra encountered in the
solution process cannot be decomposed into sufficiently simple algebra. It is usually
stated that such complicated algebra occur only when the corresponding lattice has
crossed bonds. Barahona and Istrial proved that the general, spin glass 3D Ising
model belongs to a class of problems that theorists believe will remain unsolved
forever, by translating the Ising model into terms of graph theory [337–340].
What they proved was that computing the energy states for the general, spin glass 3D
Ising model is what computer scientists call an NP-complete problem - one of a class
of recalcitrant calculations that theorists believe can be solved only by arduous brute
force computations. This is because the 3D lattices are inherently nonplanar and any
nonplanar graph throws up a barrier of computational intractability. Following the
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fundamental results of Onsager [13], Kac and Ward [60, 335], Feynman [341],
Kasteleyn [245, 246, 342], Temperley [343], Hurst and Green [244] and Barahona
[337], Istrail showed that the essential ingredient in the NP-completeness of the Ising
model is nonplanarity. This criterion includes two-dimensional models with next
nearest-neighbour interactions, in addition to the nearest-neighbour kind, which
researchers had found as vexing to solve as their three-dimensional cousins. Every
nonplanar lattice in two or three dimensions, as Istrail showed, contains a
subdivision of an infinite graph he called the ‘basic Kuratowskian’ [338]. For the
basic Kuratowskian with weights �1, 0, and 1 assigned to the edges, the problem of
computing a minimum weight ‘cut’ (i.e. set of edges joining vertices in opposite
states) is NP-complete. The calculation of the partition function for four spin glass
3D Ising models with {�J, 0,þ J} interactions, with {�J, 0} interactions, with
{0,þ J} interactions and with {�J,þ J} interactions is NP-complete, since their
crystal lattice is non-planar. Istrail claimed that the problem falls into the
’computationally intractable’ class of conundrums that are too complex to be
solved on any realistic timescale. NP-completeness, however, does not mean things
are completely hopeless. The complexity only prevents algorithms from solving all
instances of the problem in polynomial time [340]. Moreover, such NP-completeness,
from the point view of computer sciences, cannot be fully used to judge the advances
in mathematics which are needed to uncover the exact solution. Finally, as Istrail
noted, it might still be possible to find exact answers for some special cases of the
Ising model and, in particular, Ising’s original, ferromagnetic 3D model, in which all
coupling constants are equal (and positive), may turn out to be simple enough to
solve within polynomial time [339, 340]. Fortunately, what we have attempted to
exactly solve here is the only possibility for exact answers, as Istrail indicated – the
ferromagnetic 3D Ising model. The key to all the algebraic, combinatorial and
topologic problems listed above for solving exactly the 3D Ising model is the
introduction of our first conjecture. The large Lie algebra can be decomposed into
sufficiently simple algebra by introducing the additional rotation in the physical
space with higher dimensions, while it also serves to open the crosses/knots to solve
the combinatorial and topologic problems. In fact, it is our hope that the putative
exact solution of the 3D Ising model reported in this work would provide the key to
efficient algorithms for solving thousands of other computational problems, ranging
from factoring large numbers to the notorious travelling salesman problem [340].

The key point is how to properly judge the correctness of a putative exact
solution. Where no one knows the standard of such judgment, the proper steps are to
judge the correctness of the assumption/conception/conjecture and the deriving
procedure. If there is nothing wrong with the assumption/conception/conjecture and
the deriving procedure, one should accept the correctness of the final results. Any
theories (even those as great as Einstein’s general relativity) should have their own
assumptions, conceptions, conjectures or whatever the starting point. One should
allow the existence of such starting points. In the present case, the only starting
points are the two conjectures. Conjecture 1 is based on the well-known fact in
topologic, namely, the knots in a 3D space can be opened by a rotation in a 4D
space, which is introduced to deal with the well-known topologic problem as well as
the non-local property of the 3D model. As mentioned above, the introduction of the
additional dimension is not contradictory with the existence of four noncompact

3D-ordering in Ising magnet 5393



D
ow

nl
oa

de
d 

B
y:

 [Z
ha

ng
, Z

-D
] A

t: 
00

:3
4 

31
 O

ct
ob

er
 2

00
7 

space-dimensions, as introduced in Kaluza and Klein’s theory for unifying
electromagnetism and gravity, and also string theories. Alternatively, one could
also treat the additional dimension just as a pure mathematic structure or a
boundary condition. The introduction of the weights on the eigenvectors, as stated in
conjecture 2, is a very common technique in either physics or mathematics. The
detailed calculation of the weights could provide a mechanism for the high-
temperature series expansion being exact at a temperature infinitesimally deviating
from infinite, even where its radius of the convergence is reduced to zero/
infinitesimal. After the introduction of the two conjectures, the deriving procedure
simply follows those used by Onsager, Kaufman, Yang, Fisher, et al. If one could not
point out the incorrectness of the two conjectures and the deriving procedure, one
would have to accept the correctness of the final solution as the immediate
consequence of the conjectures and procedure.

The principles for judging the correctness of a theory are: (1) self-consistency,
(2) compatibility, (3) simplicity and (4) consistency with experiments. The present
work is self-consistent, compatible with the exact solution of the 2D Ising model. The
present procedure is very simple and elegant, only by the introduction of the two
conjectures, while most steps of the procedure directly follow what others employed
for the 2D Ising model. That is, employing new initial conditions as the least
possible, deriving new final results as the richest possible. A good theory indeed!
The results obtained are consistent with the results of carefully performed
experiments, although the precision of experiments on the critical phenomena
is comparatively low.

8.3. Symmetry, uniqueness and beauty of the solution

Finally, we need to check the symmetry and uniqueness of the putative exact
solution. For a rectangular lattice, the critical temperatures determined by K*¼K0

or K0*¼K coincide. When one interchanges the roles of K and K0 (in case of K 6¼K0),
however, the eigenvalues and the specific heat of the 2D system could be different by
a factor [13, 17]. The dual transformation is valid for the rectangular lattice, from
which one can also derive another condition of sinh 2K � sinh 2K0 ¼ 1 for the critical
temperature [13, 17]. For simple orthorhombic lattices, K*¼K0 þK00þ (K0K00/K) is
one of the relations for their Curie temperatures. Dual transformation is held for
interchanging the roles of K and K0 þK00 þ (K0K00/K ), i.e. [K0 þK00þ(K0K00/K)]*¼K,
from which the condition of sinh 2K � sinh 2(K0 þK00þ(K0K00/K)) ¼ 1 can be derived
for the critical temperature. Similarly, when one interchanges the roles of K and
K0 þK00þ(K0K00/K), the eigenvalues and the specific heat of the 3D system could be
different by a factor. Note that the dual transformation is held only for
interchanging the roles of K and K0 þK00þ(K0K00/K), not for interchanging the
roles of K and K0 (or K00). This makes the 3D system very complicated. For a simple
cubic lattice, K¼K0 ¼K00, the critical temperatures determined by the procedure,
setting one of the three crystallographic axes as the starting point of the
diagonalization (or the standard axis of the procedure), coincide, certainly at the
golden ratio. However, for the simple orthorhombic Ising model with less symmetry,
although the form of KK*¼KK0 þKK00 þK0K00 is very symmetric, if we interchanged
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the role of K with K0 (or K00) at the beginning of the procedure, the final results
would be different. For instance, if we selected the axis of K0 to define K0* as
e�2K

0

� tanhK0�, the critical temperature of the simple orthorhombic Ising
model would be determined by the relation of K0K0*¼KK0 þK00 þK0K00, which
differs from that determined by KK*¼KK0 þKK00 þK0K00. As K0 is smaller than K,
the former critical temperature is higher than the latter. Namely, the critical
temperature depends on which crystallographic axis of the lattice is set as the
standard axis of the procedure. The critical temperature derived from
KK*¼KK0 þK00 þK0K00 is the lowest, as K is the largest among K, K0 and K00. It is
bewildering that we have not succeeded in equalizing the critical points or other
physical quantities where there are differences between K, K0 and K00, which are
obtained by setting different axes as standard. It will be shown in the following
discussion that lack of uniqueness of the solution is ascribed to the intrinsic character
of the 3D Ising lattice. From the condition for the critical temperature of the
rectangular lattice, K*¼K0 (or K0*¼K), we have K*/K¼K0/K (or K0*/K0 ¼K/K0)
and K*K0*¼KK0. One could map the points in the subspace of K0/K51 in the
parametric axis of K0/K one to one into the subspace of K/K041 in the parametric
axis of K/K0. Considering the parametric axis of K0/K, the duality transformation is
held for the parameters in two subspace separated by the point K0/K¼ 1, at which the
silver solution is located for the square Ising lattice (the most symmetric in the 2D
system). Note that the silver ratio is actually the largest solution for the 2D Ising
system, if we always set the larger from K and K0 as the standard axis. This means
that any solution higher than the silver ratio would be forbidden for the 2D Ising
lattice if we started our procedure in this way. From the conditions for the critical
temperature of the simple orthorhombic Ising lattices, we have K*/K¼K0/KþK00/
KþK0K00/K2 and KK*¼K0K0*¼K00K00*. The condition of KK*¼K0K0*¼K00K00* for
the 3D Ising system differs with K*K0*¼KK0 for the 2D Ising system. Nevertheless,
the duality transformation is held for the parameters in two subspaces separated by
the curve of K0/KþK00/KþK0K00/K2

¼ 1 in the parametric plane K0/K�K00/K.
Actually, all the points at the curve of K0/KþK00/KþK0K00/K2

¼ 1 (the dashed
curve in figure 4) correspond to the simple orthorhombic Ising lattices with the
critical temperature of the silver solution. However, the golden solution for the
simple cubic Ising lattice (the most symmetric in the 3D system) is not located
at the line of K0/KþK00/KþK0K00/K2

¼ 1, but at the point (1, 1) (the star in figure 4)
in the parametric plane K0/K�K00/K. The subspace determined by K0/Kþ
K00/KþK0K00/K251\K0/K40\K00/K40 does not coincide exactly with that
determined by 05K0/K51\ 05K00/K51, which can be mapped fully one to one
into the subspace determined by K00/K05K/K0 \K/K041\K00/K041\K00/K040 in
the parametric plane K/K0 �K00K0. This illustrates clearly that lack of uniqueness of
the solution is an intrinsic character of the 3D Ising lattice. Even if the term of the
additional rotation K0K00/K was not included in our calculation, lack of unification of
the solution would still be true. At the very beginning of our procedure,
the conditions of K�K0 and K�K00 (i.e. 0�K0/K� 1\ 0�K00/K� 1 in the
parametric plane K0/K�K00/K) are fixed to be held, which is very important
because if one loosens them, the solution would be not unique but physically
meaningless. Taken as a reasonable explanation, we must assume that K000 is not
larger than either K0 or K00, considering that the additional rotation is performed in a
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curled-up dimension. At the beginning of the diagonalization procedure, we have to
set up only the largest among K, K0 and K00 as the standard axis for the definition of
K*, because the solution obtained in this way is the lowest. In this way, the points in
the area of 0�K0/K� 1\ 0�K00/K� 1 in the parametric plane K0/K�K00/K (see
figure 4) can fully represent all the possible parameters for the 3D simple
orthorhombic Ising lattices. It is obvious that the simple cubic lattice with the
highest symmetry has the highest critical temperature, at the golden ratio. In other
words, if the 3D lattice is asymmetric with difference between K, K0 and K00, the
critical temperature will be lower than the golden ratio, as the largest among K, K0

and K00 is always set as the standard axis. This means that any solution higher than
the golden ratio is forbidden for the 3D simple orthorhombic Ising lattices due to
lack of physical significance. This is reasonable since the simple cubic lattice with the
highest symmetry is the system with the most obvious characters of the three
dimensions and the 3D lattice with less symmetry is more or less closer to the 1D or
2D system. As shown in figure 1, if one fixes K and sets K0 ¼K00, the critical point
decreases with decreasing K0 and K00 to disappear as no ordering occurs in the 1D
system. However, on the other hand, if one fixed K0 ¼K, the critical point of the
simple tetragonal lattices would decrease from the golden ratio of the simple cubic
lattice to the silver ratio of the square lattice with decreasing K00.

One of the most remarkable aspects of the golden ratio is the proportion inherent
in it. The golden ratio always surprisingly appears at the crosspoint of the simple and
complex, classic geometry and irregular geometry [344]. Most people are familiar
with the golden ratio since it is one of the most ubiquitous irrational numbers known
to man. Actually, it is the most irrational number ever and it is related to the beauty

Figure 4. Phase diagram in the parametric plane (K0/K)� (K00/K) of the simple ortho-
rhombic Ising lattices. The golden solution for the simple cubic Ising lattice is located by the
star (1, 1). The dashed curve of (K0/K)þ (K00/K)þ (K0K00/K2)¼ 1 corresponds to the points at
the critical temperature of the silver solution. The area between the dashed and the dash/dot
curve of (K0/K)þ (K00/K)þ (K0K00/K2)� 1.39 is for the 3D to 2D crossover phenomenon.
All the points below the dashed curve have the 2D critical exponent, while all the points above
the dash/dot curve behave as a real 3D system.
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of nature, such as the golden section, the golden angle, the golden ellipse, the golden
triangle, the golden rectangle, the pentagram, the golden spiral, etc. The famous
Fibonacci sequence and the golden ratio are intertwined. The golden ratio occurs in
the structure of both plants and animals –the best known example being the nautilus
shell. The system trends to equilibrium at a state with minimizing the cost of free
energy. It is thought that a system with a golden ratio may stand for such a
state [344]. The various golden ratios that appear in real life may originate from one
essential source: competition between interaction energy and thermal activity
balances at the critical temperature of the golden ratio for the most symmetric 3D
Ising lattice. Natural symmetry is the most important for physical properties of
a system. It has been noticed that the golden ratio solution appears for the
Curie temperature of the 2D rectangular Ising lattice with K0 ¼ 3K, which has less
symmetry than the square Ising lattice with the silver ratio solution and, therefore,
the golden ratio solution can be excluded from the 2D system, as discussed above.
This beautiful solution of the golden ratio corresponds only to the critical
temperature of the most symmetric 3D simple cubic Ising system. The more
symmetric, the more beautiful. This is the nature of our symmetric three dimensions,
the nature of the world we are living.

9. Conclusions

A putative exact solution of the 3D Ising model on simple orthorhombic lattices has
been derived explicitly. The partition function of the 3D simple orthorhombic Ising
model has been evaluated by spinor analysis, by introducing the two conjectures
employing an additional rotation in the fourth curled-up dimension and weight
factors on the eigenvectors. The partition function of the 3D simple orthorhombic
Ising model have been dealt with within a (3þ 1)-dimensional framework with
different weight factors on the eigenvectors. The relation of KK*¼KK0 þKK00 þK0K00

or sinh 2K � sinh 2(K0 þK00 þ (K0K00/K))¼ 1 would be valid for the critical temperature
of the simple orthorhombic Ising model, if the two conjectures were true. For the
simple cubic Ising lattice, the putative critical point is located exactly at the golden
ratio xc ¼ e�2Kc ¼ ð

ffiffiffi
5
p
� 1Þ=2, as derived from K*¼ 3K or sinh 2K � sinh 6K¼ 1. The

specific heat of the simple orthorhombic Ising lattices shows a logarithmic singularity
at the critical point of the phase transition, however, also based on the validity of the
conjectures. The putative exact value for the critical temperature is lower than all
approximation values, as it should be. As we always set the largest among K, K0 and
K00 as the standard axis for the definition of K*, any solution higher than the golden
(or silver) ratio would be forbidden for the 3D (or 2D) Ising lattices. The golden (or
silver) ratio is the largest solution for the critical temperature of the 3D (or 2D) Ising
system, corresponding to the most symmetric, simple cubic (or square) lattice.
Natural symmetry is most important for the physical properties of the system. The
most symmetric, the most beautiful. The spontaneous magnetization of the 3D
simple orthorhombic Ising ferromagnet has been derived by the perturbation
procedure, following introduction of the conjectures. The spin correlation
functions have been discussed in terms of the Pfaffians, by defining the effective
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skew-symmetric matrix Aeff. The true range �x of the correlation and the
susceptibility of the 3D simple orthorhombic Ising system have been determined
by procedures similar to those used for the two-dimensional Ising system. The
putative critical exponents for the 3D simple orthorhombic Ising lattices have been
derived explicitly to be �¼ 0, �¼ 3/8, � ¼ 5/4, �¼ 13/3, �¼ 1/8 and �¼ 2/3, showing
universality behaviour and satisfying the scaling laws. These exact values for the
critical exponents of the 3D Ising lattice are located between those for the 2D and
(mean field) 4D Ising lattice. These critical exponents are close to approximation
values and experimental data. The exact solutions have been judged by several
criteria. The reasons for the deviations in the approximation results and
experimental data from the putative exact solutions are interpreted. The simple
cubic lattice with the highest symmetry is the most obvious characteristic of the three
dimensions and the 3D lattice with less symmetry is closer to the 1D or 2D lattice.
The 3D-to-2D crossover phenomenon differs from the 2D-to-1D crossover
phenomenon and there is a gradual crossover of the exponents from 3D to 2D
values. Special attention has also been paid to the extra energy caused by the
introduction of the fourth curled-up dimension; the chaotic states at/near infinite
temperature as revealed by the introduction of weight factors on the eigenvectors.
The physics beyond the conjectures and the existence of the extra dimension are
discussed, with referring to the quantum mechanism. The present work not only has
significance in statistic physics and condensed matter physics but also bridges the gap
between the fields of quantum field theory, cosmology theory, high-energy particle
physics, graph theory and computer sciences. Our results, which have aesthetic
appeal, reveal the nature of nature: simple, symmetric and beautiful.
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Appendix A

The effects of the rotations !2ty and !2tz with their weight factors wy and wz are
discussed as follows. It is not surprising that things can come out of nothing in
nature. The addition of the fourth curled-up dimension expands the 3D physical
world to a higher-dimensional world so that it is necessary to introduce the weights
wy and wz to effectively equalize it with the original system. The weights defined
in Conjecture 2 vary in range [�1, 1]. They can be equal to 0,	 1, and any
values between 0 and	 1. They could interchange their roles (and values) at any
time, from the point of view of symmetry. In this way, the system studied is always

5398 Z.-D. Zhang



D
ow

nl
oa

de
d 

B
y:

 [Z
ha

ng
, Z

-D
] A

t: 
00

:3
4 

31
 O

ct
ob

er
 2

00
7 

(3þ 1)-dimensional, even where any of the weights occasionally equals zero. A ‘zero’

weight factor wy or wz still acting with other dimensions is no more mystical than

Euler’s equation ei�þ 1¼ 0: an imaginary number interacting with real numbers to

produce nothing.
The partition function of the 3D simple cubic Ising lattice could be expressed

as (74):

N�1 lnZ ¼ ln 2þ
1

2ð2�Þ4

Z �

��

Z �

��

Z �

��

Z �

��

ln cosh 2K½ cosh 6K

� sinh 2K cos!0� sinh 6K wx cos!x þ wy cos!y þ wz cos!z

� 	

� d!0d!xd!yd!z ðA1Þ

where wx¼ 1 and

wy ¼ wz ¼ 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX1
i¼0

bi�2ii

s
, ðA2Þ

with b0¼ 7/18, b1¼�4025/216, b2¼ 62125/432, b3¼�315237349/31104,

b4¼�196961527937/186624, b5¼�81949884191959/746496, b6¼�1598437187231

21207/13436928, b7¼�887867077613442477677/644972544, b8¼�216261883802

726526301599/1289945088, b9¼�2730834093284969018142818253/139314069504,

b10¼�931292714680130608913105509313/278628139008, . . .

Ansatz 1: All the coefficients bi for the terms embodied in wy and wz are negative

for i� 1.
There is no mathematical problem in the introduction of the weights wx, wy and

wz, which is used to embody some information of the high-temperature terms.

Clearly, the close form of the free energy has been found for the 3D Ising model from

T¼ 0 to any finite temperatures and also at infinite temperature (�¼ 0), with the

exception of near-infinite temperature (�! 0). Actually, in principle, we could

account for all of the infinite terms for near-infinite temperature based on the law of

high-temperature expansion (though extremely difficulty). The coefficients bi can

be determined exactly for higher orders as long as the corresponding terms of

the high-temperature expansion are determined. One would estimate how the higher-

order terms appear from these existing terms. All the coefficients for the terms up to

b10, except for b0, embodied in wy and wz are negative. Ansatz 1 is introduced to

extend this tendency to all the terms inside the square root. The ratio of biþ1/bi
varies in the range 70 – 171 for i� 2. One could expect that all the coefficients bi for

i410 are negative, with the ratios of biþ1/bi in the order of hundreds. Actually, these

facts can be proved by evaluating the higher-order coefficients bi approximately with

high precision, even without having information on higher-order terms of the high

temperature expansion. This is because, in the procedure of determining each

coefficient bi, there is always a term which does not relate to any lower-order

coefficients, but appears to compensate most of the contribution of the high-order

terms of the high-temperature expansion. Furthermore, the terms that relate directly

to lower-order coefficients are dominant for the higher-order coefficient bi.

Thus, near infinite temperature (�! 0), the effects of the high-order terms (higher

than 22nd) are extremely small, which can be neglected in a certain sense. Therefore,
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these infinite terms of the high-temperature expansion can be embodied into the close
square form of the weight factors.

One could estimate how the weights appear from these existed terms, supposing
Ansatz 1 is true. Note that the weights wy¼wz¼	

ffiffiffiffiffiffiffiffiffiffi
7=18
p

at infinite temperature as
�¼ 0. The weights wy and wz approach zero identically when the temperature of the
system becomes infinitesimal below infinite (i.e. �! 6¼ 0 and infinitesimal) because, if
Ansatz 1 were true, the truncated sums in (A.2) would become negative, making the
square root to be imagined and physically not meaningful. This indicates that the
weights wy and wz are always equal to zero at any finite temperatures.

By the following procedure, we will show that at/near infinite temperature,
the exact solution for the partition function of the 3D simple cubic Ising lattice
fits exactly to the high-temperature series expansion [80, 93, 107, 111]. Equation (A1)
can be expressed as:

ln l� ln 2ðcosh 2K cosh 6KÞ1=2

¼
1

2ð2�Þ4

Z �

0

Z �

0

Z �

0

Z �

0

ln½1� 2�3D cos!0 � 2�03D wx cos!x þ wy cos!y

�
þwz cos!zÞ
d!

0d!xd!yd!z ðA3Þ

Here l¼Z1/N,

�3D¼
tanh2K

2cosh6K
¼

� 1�3�2þ3�4��6
� 	

1þ16�2þ30�4þ16�6þ�8

¼ ��19�3þ277�5�3879�7þ54057�9�752955�11þ10487357�13

�146070095�15þ2034494033�17�28336846435�19þ394681356133�21þ�� � ðA4Þ

and

�03D¼
tanh6K

2cosh2K
¼

� 3þ7�2�7�4�3�6
� 	

1þ16�2þ30�4þ16�6þ�8

¼ 3��41�3þ559�5�7765�7þ108123�9�1505921�11þ20974727�13

�292140205�15þ4068988083�17�56673692889�19þ789362712287�21 . . . ðA5Þ

with �¼ tanh K. Then, one can calculate immediately the high-order terms �3D
2, �3D

4,
�3D

6, k3D
8 , . . . ; � 03D

2, �03D
4, �03D

6, �03D
8 , . . . ; �3D

2 �03D
2, �3D

4 �03D
2, �3D

6 �03D
2, . . . ;

�3D
2 �03D

4, �3D
4 �03D

4, �3D
6 �03D

4, . . . ; . . . The left side of the equation above for the
partition function is re-written as:

ln l� ln 2 cosh3 K
1þ 16�2 þ 30�4 þ 16�6 þ �8

1� �2

� �1=2
" #

¼ ln l� ln 2 cosh3 K 1þ
17

2
�2 �

101

8
�4 þ

2221

16
�6 �

157133

128
�8

��

þ
3128095

256
�10 �

132058577

1024
�12 þ

2909991333

2048
�14

�
529380209469

32768
�16 þ

12331364457995

65536
�18 �

585509987761867

262144
�20

þ
14115585949315307

524288
�22 þ � � �

��
ðA6Þ
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Expanding the logarithmic function on the right-hand side of the expression for the

partition function by lnð1� xÞ ¼ �
P1

n¼1 x
n=n yields:

�
X1
n¼1

1

n
�

X
pþqþrþs¼n

n!

p!q!r!s!
� 2n�p3D�

0ðqþrþsÞ
3D � f ðrþsÞ

� cosp !0 cosq !x cos
r !y cos

s !z

ðA7Þ

and then integrating each term results in:

�
1

2
�23D þ �

02
3D

� 	
þ f2� 023D

� �

�
3

4
�43D þ �

04
3D

� 	
þ 3�23D�

02
3D

� �
þ 6f2 �23D�

02
3D þ �

04
3D

� 	
þ 4:5f4� 043D

� �

�
5

3
�63D þ �

06
3D

� 	
þ 15 �43D�

02
3D þ �

2
3D�

04
3D

� 	� ��

þ f2 30 �43D�
02
3D þ �

06
3D

� 	
þ 120�23D�

04
3D

 

þ 90f4 �23D�

04
3D þ �

06
3D

� 	
þ
100

3
f6� 063D

�

�
35

8
�83D þ �

08
3D

� 	
þ 70 �63D�

02
3D þ �

2
3D�

06
3D

� 	
þ
315

2
�43D�

04
3D

� ��

þ f2 140 �63D�
02
3D þ �

08
3D

� 	
Þ þ 1260 �43D�

04
3D þ �

2
3D�

06
3D

� 	 

þ f4 945 �43D�

04
3D þ �

08
3D

� 	
þ 3780�23D�

06
3D

 

þ 1400f6ð�23D�

06
3D þ �

08
3DÞ þ 306:25f8� 083D

�
�

63

5
�103D þ �

010
3D

� 	
þ 315 �83D�

02
3D þ �

2
3D�

08
3D

� 	
þ 1260 �63D�

04
3D þ �

4
3D�

06
3D

� 	� ��

þ f2 630 �83D�
02
3D þ �

010
3D

� 	
Þ þ 10080 �63D�

04
3D þ �

2
3D�

08
3D

� 	
þ 22680�43D�

06
3D

 

þ f4 7560 �63D�

04
3D þ �

010
3D

� 	
þ 68040 �43D�

06
3D þ �

2
3D�

08
3D

� 	 

þ f6 25200 �43D�

06
3D þ �

010
3D

� 	
þ 100800�23D�

08
3D

 

þ 22050f8 �23D�

08
3D þ �

010
3D

� 	
þ 3175:2f10� 0103D

�
�

77

2
�123D þ �

012
3D

� 	
þ 1386 �103D�

02
3D þ �

2
3D�

010
3D

� 	��

þ 8662:5 �83D�
04
3D þ �

4
3D�

08
3D

� 	
þ 15400�63D�

06
3D



þ f2 2772 �103D�

02
3D þ �

012
3D

� 	
þ 69300 �83D�

04
3D þ �

2
3D�

010
3D

� 	
þ 277200 �63D�

06
3D þ �

4
3D�

08
3D

� 	

þ f4 51975 �83D�

04
3D þ �

012
3D

� 	
þ 831600 �63D�

06
3D þ �

2
3D�

010
3D

� 	
þ 1871100�43D�

08
3D

 

þ f6 308000 �63D�

06
3D þ �

012
3D

� 	
þ 2772000 �43D�

08
3D þ �

2
3D�

010
3D

� 	 

þ f8 606375 �43D�

08
3D þ �

012
3D

� 	
þ 2425500�23D�

010
3D
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þ 349272f10 �23D�
010
3D þ �

012
3D

� 	
þ 35574f12� 0123D

�
�

858

7

��
�143D þ �

014
3D

� 	
þ 6006 �123D�

02
3D þ �

2
3D�

012
3D

� 	
þ 54054 �103D�

04
3D þ �

4
3D�

010
3D

� 	
þ 150150 �83D�

06
3D þ �

6
3D�

08
3D

� 	

þ f2 12012½ �123D�

02
3D þ �

014
3D

� 	
þ 432432 �103D�

04
3D þ �

2
3D�

012
3D

� 	
þ 2702700 �83D�

06
3D þ �

4
3D�

010
3D

� 	
þ 4804800�63D�

08
3D



þ f4 324324 �103D�

04
3D þ �

014
3D

� 	
þ 8108100 �83D�

06
3D þ �

2
3D�

012
3D

� 	
þ 32432400 �63D�

08
3D þ �

4
3D�

010
3D

� 	

þ f6 3003000 �83D�

06
3D þ �

014
3D

� 	
þ 48048000 �63D�

08
3D þ �

2
3D�

012
3D

� 	
þ 108108000�43D�

010
3D



þ f8 10510500 �63D�

08
3D þ �

014
3D

� 	
þ 94594500 �43D�

010
3D þ �

2
3D�

012
3D

� 	 

þ f10 13621608 �43D�

010
3D þ �

014
3D

� 	
þ 54486432�23D�

012
3D

 

þ 5549544f12 �23D�

012
3D þ �

014
3D

� 	
þ 420665

1

7
f14� 0143D

�

�
6435

16

��
�163D þ �

016
3D

� 	
þ 25740 �143D�

02
3D þ �

2
3D�

014
3D

� 	
þ 315315 �123D�

04
3D þ �

4
3D�

012
3D

� 	
þ 1261260 �103D�

06
3D þ �

6
3D�

010
3D

� 	
þ
7882875

4
�83D�

08
3D

�

þ f2 51480½ �143D�
02
3D þ �

016
3D

� 	
þ 2522520 �123D�

04
3D þ �

2
3D�

014
3D

� 	
þ 22702680 �103D�

06
3D þ �

4
3D�

012
3D

� 	
þ 63063000 �83D�

08
3D þ �

6
3D�

010
3D

� 	

þ f4 1891890 �123D�

04
3D þ �

016
3D

� 	
þ 68108040 �103D�

06
3D þ �

2
3D�

014
3D

� 	
þ 425675250 �83D�

08
3D þ �

4
3D�

012
3D

� 	
þ 756756000�63D�

010
3D



þ f6 25225200 �103D�

06
3D þ �

016
3D

� 	
þ 630630000 �83D�

08
3D þ �

2
3D�

014
3D

� 	
þ 2522520000 �63D�

010
3D þ �

4
3D�

012
3D

� 	

þ f8 137950312:5 �83D�

08
3D þ �

016
3D

� 	
þ 2207205000 �63D�

010
3D þ �

2
3D�

014
3D

� 	
þ 4966211250�43D�

012
3D



þ f10 317837520 �63D�

010
3D þ �

016
3D

� 	
þ 2860537680 �43D�

012
3D þ �

2
3D�

014
3D

� 	 

þ f12 291351060 �43D�

012
3D þ �

016
3D

� 	
þ 1165404240�23D�

014
3D

 

þ 88339680f14 �23D�

014
3D þ �

016
3D

� 	
þ 5176153:125f16� 0163D

�
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�
12155

9

��
�183D þ �

018
3D

� 	
þ 109395 �163D�

02
3D þ �

2
3D�

016
3D

� 	
þ 1750320 �143D�

04
3D þ �

4
3D�

014
3D

� 	
þ 9529520 �123D�

06
3D þ �

6
3D�

012
3D

� 	
þ 21441420 �103D�

08
3D þ �

8
3D�

010
3D

� 	

þ f2 218790½ �163D�

02
3D þ �

018
3D

� 	
þ 14002560 �143D�

04
3D þ �

2
3D�

016
3D

� 	
þ 171531360 �123D�

06
3D þ �

4
3D�

014
3D

� 	
þ 686125440 �103D�

08
3D þ �

6
3D�

012
3D

� 	
þ 1072071000�83D�

010
3D



þ f4 10501920 �143D�

04
3D þ �

018
3D

� 	
þ 514594080 �123D�

06
3D þ �

2
3D�

016
3D

� 	
þ 4631346720 �103D�

08
3D þ �

4
3D�

014
3D

� 	
þ 12864852000 �83D�

010
3D þ �

6
3D�

012
3D

� 	

þ f6 190590400 �123D�

06
3D þ �

018
3D

� 	
þ 6861254400 �103D�

08
3D þ �

2
3D�

016
3D

� 	
þ 42882840000 �83D�

010
3D þ �

4
3D�

014
3D

� 	
þ 76236160000�63D�

012
3D



þ f8 1500899400 �103D�

08
3D þ �

018
3D

� 	
þ 37522485000 �83D�

010
3D þ �

2
3D�

016
3D

� 	
þ 150089940000 �63D�

012
3D þ �

4
3D�

014
3D

� 	

þ f10 5403237840 �83D�

010
3D þ �

018
3D

� 	
þ 86451805440 �63D�

012
3D þ �

2
3D�

016
3D

� 	
þ 194516562240�43D�

014
3D



þ f12 8805276480 �63D�

012
3D þ �

018
3D

� 	
þ 79247488320 �43D�

014
3D þ �

2
3D�

016
3D

� 	 

þ f14 6007098240 �43D�

014
3D þ �

018
3D

� 	
þ 24028392960�23D�

016
3D

 

þ 1407913650f16 �23D�

016
3D þ �

018
3D

� 	
þ 65664011

1

9
f18� 0183D

�

� 4618:9½
�

�203D þ �
020
3D

� 	
þ 461890 �183D�

02
3D þ �

2
3D�

018
3D

� 	
þ
18706545

2
�163D�

04
3D þ �

4
3D�

016
3D

� 	
þ 66512160 �143D�

06
3D þ �

6
3D�

014
3D

� 	
þ 203693490 �123D�

08
3D þ �

8
3D�

012
3D

� 	
þ
1466593128

5
�103D�

010
3D

�

þ f2 923780½ �183D�
02
3D þ �

020
3D

� 	
þ 74826180 �163D�

04
3D þ �

2
3D�

018
3D

� 	
þ 1197218880 �143D�

06
3D þ �

4
3D�

016
3D

� 	
þ 6518191680 �123D�

08
3D þ �

6
3D�

014
3D

� 	
þ 14665931280 �103D�

010
3D þ �

8
3D�

012
3D

� 	

þ f4 56119635 �163D�

04
3D þ �

020
3D

� 	
þ 3591656640 �143D�

06
3D þ �

2
3D�

018
3D

� 	
þ 43997793840 �123D�

08
3D þ �

4
3D�

016
3D

� 	
þ 175991175360 �103D�

010
3D þ �

6
3D�

014
3D

� 	
þ 274986211500�83D�

012
3D



þ f6 1330243200 �143D�

06
3D þ �

020
3D

� 	
þ 65181916800 �123D�

08
3D þ �

2
3D�

018
3D

� 	
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þ 586637251200 �103D�
010
3D þ �

4
3D�

016
3D

� 	
þ 1629547920000 �83D�

012
3D þ �

6
3D�

014
3D

� 	

þ f8 14258544300 �123D�

08
3D þ �

020
3D

� 	
þ 513307594800 �103D�

010
3D þ �

2
3D�

018
3D

� 	
þ 3208172467500 �83D�

012
3D þ �

4
3D�

016
3D

� 	
þ 5703417720000�63D�

014
3D



þ f10 73916293651:2 �103D�

010
3D þ �

020
3D

� 	
þ 1847907341280 �83D�

012
3D þ �

2
3D�

018
3D

� 	
þ 7391629365120 �63D�

014
3D þ �

4
3D�

016
3D

� 	

þ f12 188212784760 �83D�

012
3D þ �

020
3D

� 	
þ 3011404556160 �63D�

014
3D þ �

2
3D�

018
3D

� 	
þ 6775660251360�43D�

016
3D



þ f14 228269733120 �63D�

014
3D þ �

020
3D

� 	
þ 2054427598080 �43D�

016
3D þ �

2
3D�

018
3D

� 	 

þ f16 120376617075 �43D�

016
3D þ �

020
3D

� 	
þ 481506468300�23D�

018
3D

 

þ 22457091800f18 �23D�

018
3D þ �

020
3D

� 	
Þ þ 853369488:4f20� 0203D

�
�

176358

11

��
�223D þ �

022
3D

� 	
þ 1939938 �203D�

02
3D þ �

2
3D�

020
3D

� 	
þ 48498450 �183D�

04
3D þ �

4
3D�

018
3D

� 	
þ 436486050 �163D�

06
3D þ �

6
3D�

016
3D

� 	
þ 1745944200 �143D�

08
3D þ �

8
3D�

014
3D

� 	
þ 3422050632 �123D�

010
3D þ �

10
3D�

012
3D

� 	

þ f2 3879876½ �203D�

02
3D þ �

022
3D

� 	
þ 387987600 �183D�

04
3D þ �

2
3D�

020
3D

� 	
þ 7856748900 �163D�

06
3D þ �

4
3D�

018
3D

� 	
þ 55870214400 �143D�

08
3D þ �

6
3D�

016
3D

� 	
þ 171102531600 �123D�

010
3D þ �

8
3D�

014
3D

� 	
þ 246387645504�103D�

012
3D



þ f4 290990700 �183D�

04
3D þ �

022
3D

� 	
þ 23570246700 �163D�

06
3D þ �

2
3D�

020
3D

� 	
þ 377123947200 �143D�

08
3D þ �

4
3D�

018
3D

� 	
þ 2053230379200 �123D�

010
3D þ �

6
3D�

016
3D

� 	
þ 4619768353200 �103D�

012
3D þ �

8
3D�

014
3D

� 	

þ f6 8729721000 �163D�

06
3D þ �

022
3D

� 	
þ 558702144000 �143D�

08
3D þ �

2
3D�

020
3D

� 	
þ 6844101264000 �123D�

010
3D þ �

4
3D�

018
3D

� 	
þ 27376405056000 �103D�

012
3D þ �

6
3D�

016
3D

� 	
þ 42775632900000�83D�

014
3D



þ f8 122216094000 �143D�

08
3D þ �

022
3D

� 	
þ 5988588606000 �123D�

010
3D þ �

2
3D�

020
3D

� 	
þ 53897297454000 �103D�

012
3D þ �

4
3D�

018
3D

� 	
þ 149714715150000 �83D�

014
3D þ �

6
3D�

016
3D

� 	

þ f10 862356759264 �123D�

010
3D þ �

022
3D

� 	
þ 31044843333504 �103D�

012
3D þ �

2
3D�

020
3D

� 	
þ 194030270834400 �83D�

014
3D þ �

4
3D�

018
3D

� 	
þ 344942703705600�63D�

016
3D



þ f12 3161974783968 �103D�

012
3D þ �

022
3D

� 	
þ 79049369599200 �83D�

014
3D þ �

2
3D�

020
3D

� 	
þ 316197478396800 �63D�

016
3D þ �

4
3D�

018
3D

� 	
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þ f14 5992080494400 �83D�
014
3D þ �

022
3D

� 	
þ 95873287910400 �63D�

016
3D þ �

2
3D�

020
3D

� 	
þ 215714897798400�43D�

018
3D



þ f16 5617575463500 �63D�

016
3D þ �

022
3D

� 	
þ 50558179171500 �43D�

018
3D þ �

2
3D�

020
3D

� 	 

þ f18 2357994639000 �43D�

018
3D þ �

022
3D

� 	
þ 9431978556000�23D�

020
3D

 

þ 358415185128f20 �23D�

020
3D þ �

022
3D

� 	
þ 11309870605

1

11
f22� 0223D

�
ðA8Þ

with f�wv¼wz. One needs to put the expansions for �3D and �03D (and also high-

order terms) into the expression (A8). The algebra is straightforward and one arrives:

�
17

2
�2 þ

207

4
�4 �

2573

6
�6 þ

39135

8
�8 �

504377

10
�10 þ

7589331

12
�12

�
97218677

14
�14 þ

1488554079

16
�16 �

18520701857

18
�18

þ
295407516807

20
�20 �

3466155691037

22
�22 þ � � � ðA9Þ

Re-writing this equation in logarithmic form yields:

ln 1�
17

2
�2 þ

703

8
�4 �

15537

16
�6 þ

1531259

128
�8 �

37568183

256
�10

�

þ
1944333867

1024
�12 �

49369925777

2048
�14 þ

10486210475347

32768
�16

�
270077234947067

65536
�18 þ

14620934319382209

262144
�20

�
377787247047993783

524288
�22 þ � � �

�
ðA10Þ

Then, from (A6) and (A10), one derives:

ln l ¼ ln 2 cosh3 K 1þ
17

2
�2 �

101

8
�4 þ

2221

16
�6 �

157133

128
�8

��

þ
3128095

256
�10 �

132058577

1024
�12 þ � � �

�

� 1�
17

2
�2 þ

703

8
�4 �

15537

16
�6 þ

1531259

128
�8 �

37568183

256
�10

� �

þ
1944333867

1024
�12 � � � �

��

¼ ln 2 cosh3 K


1þ 3�4 þ 22�6 þ 192�8 þ 2046�10 þ 24853�12
�

þ 329334�14 þ 4649601�16 þ 68884356�18 þ 1059830112�20

þ16809862992�22 þ � � �
	


ðA11Þ
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The result is equal, term by term, to the high-temperature series expansion at its
high-temperature limit [80,93,107,111]:

l ¼ Z1=N ¼ 2 cosh3 K 1þ 3�4 þ 22�6 þ 192�8 þ 2046�10 þ 24853�12


þ 329334�14 þ 4649601�16 þ 68884356�18 þ 1059830112�20

þ 16809862992�22 þ � � �



ðA12Þ

For finite temperatures, the partition function can be expanded as:

l ¼ Z1=N ¼ 2 cosh3 K 1þ
7

2
�2 þ

87

8
�4 þ

3613

48
�6 þ

170209

384
�8

�

þ
929761

256
�10 þ

318741323

9216
�12 þ

6705494087

18432
�14 þ

411207879769

98304
�16

þ
270525364951805

5308416
�18 þ

13788821925530329

21233664
�20

þ
121443302317649443

14155776
�22 þ � � �

�
ðA13Þ

From another angle, one realizes that the high-temperature series expansion could fit
well with the putative exact solution only at/near infinite temperature, if one assumes
the putative exact solution to be correct. Possibly, the high-temperature series
expansion would be valid only at/near infinite temperature. However, the
appearance of fraction numbers in (A13) suggests that �3D and �03D, instead of �,
might be a good basis of the series expansion for the exact solution.

Appendix B

One could also prove that the putative exact solution well reproduces the results of
the high-temperature series expansion at/near infinite temperature for the simple
orthorhombic Ising lattices. According to equation (49), the partition function for
the simple orthorhombic Ising lattices could be expressed as:

N�1 lnZ ¼ ln 2þ
1

2ð2�Þ4

Z �

��

Z �

��

Z �

��

Z �

��

ln cosh 2K½ cosh 2ðK0 þ K00 þ K000Þ

� sinh 2K cos!0 � sinh 2ðK0 þ K00 þ K000Þ

� wx cos!x þ wy cos!y þ wz cos!z

� 	

d!0d!xd!yd!z ðB1Þ

with wx¼ 1 and:

wy ¼ wz ¼ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0 � A1 � A2 � � � �

p
, ðB2Þ

where the leading terms are as follows:

A0 ¼
�24 þ 2�2�3 þ 2�3�4 þ 2�4�2

2 �2 þ �3 þ �4ð Þ
2

, ðB3aÞ
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A1 ¼ �
1

8 �2 þ �3 þ �4ð Þ
3
23�54 þ 115


�2�
4
4 þ 115�3�

4
4 þ 32�42�4

þ 32�43�4 þ 32�42�3 þ 32�2�
4
3 þ 128�32�

2
3 þ 128�22�

3
3 þ 136�32�

2
4

þ 136�33�
2
4 þ 196�22�

3
4 þ 196�23�

3
4 þ 596�2�

2
3�

2
4 þ 596�22�3�

2
4

þ 528�22�
2
3�4 þ 460�2�3�

3
4 þ 272�32�3�4 þ 272�2�

3
3�4



ðB3bÞ

A2 ¼ �
1

16ð�2 þ �3 þ �4Þ
4
472�62�

2
4 þ 472�63�

2
4 þ 464�62�

2
3 þ 464�22�

6
3 þ 1040�32�

5
3


þ 1040�52�

3
3 þ 752�52�

3
4 þ 752�53�

3
4 þ 1376�42�

4
3 þ 472�42�

4
4

þ 472�43�
4
4 þ 944�62�3�4 þ 944�2�

6
3�4 þ 2320�2�

5
3�

2
4 þ 2320�52�3�

2
4

þ 2608�52�
2
3�4 þ 2608�22�

5
3�4 þ 52�22�

2
3�

4
4 þ 4712�22�

4
3�

2
4 þ 4712�42�

2
3�

2
4

þ 454�2�
3
3�

4
4 þ 454�32�3�

4
4 þ 2304�42�3�

3
4 þ 2304�2�

4
3�

3
4 þ 4400�32�

4
3�4

þ 4400�42�
3
3�4 þ 6096�32�

3
3�

2
4 þ 3280�22�

3
3�

3
4 þ 3280�32�

2
3�

3
4 þ 112�72�4

þ 112�73�4 þ 112�72�3 þ 112�2�
7
3 � 33�84 � 172�2�

7
4 � 172�3�

7
4

� 309�22�
6
4 � 309�23�

6
4 � 90�32�

5
4 � 90�33�

5
4 � 744�2�3�

6
4 � 934�2�

2
3�

5
4

� 934�22�3�
5
4 � 460�21�

6
4 � 2760�21�2�

5
4 � 2760�21�3�

5
4 � 544�21�

5
2�3

� 544�21�2�
5
3 � 544�21�

5
2�4 � 544�21�

5
3�4 � 6252�21�

2
2�

4
4 � 6252�21�

2
3�

4
4

� 3136�21�
4
2�

2
3 � 3136�21�

2
2�

4
3 � 3200�21�

4
2�

2
4 � 3200�21�

4
3�

2
4

� 5184�21�
3
2�

3
3 � 6608�21�

3
2�

3
4 � 6608�21�

3
3�

3
4 � 34208�21�

2
2�

2
3�

2
4

� 19824�21�
3
2�3�

2
4 � 19824�21�2�

3
3�

2
4 � 18400�21�

3
2�

2
3�4

� 18400�21�
2
2�

3
3�4 � 6400�21�

4
2�3�4 � 6400�21�2�

4
3�4 � 25008�21�

2
2�3�

3
4

� 25008�21�2�
2
3�

3
4�13800�

2
1�2�3�

4
4



ðB3cÞ

Here, �1¼ tanh K, �2¼ tanh K0, �3¼ tanh K00 and �4¼ tanh K000.
Equation (B1) is reduced to:

ln l� ln 2ðcosh 2K cosh 2ðK0 þ K00 þ K000ÞÞ1=2

¼
1

2ð2�Þ4

Z �

0

Z �

0

Z �

0

Z �

0

ln½1� 2�3D cos!0

�2�03D wx cos!x þ wy cos!y þ wz cos!z

� 	

d!0d!xd!yd!z ðB4Þ

Here

�3D ¼
tanh 2K

2 cosh 2ðK0 þ K00 þ K000Þ

¼
�1 1� �22 � �

2
3 � �

2
4 þ �

2
2�

2
3 þ �

2
3�

2
4 þ �

2
2�

2
4 � �

2
2�

2
3�

2
4

� 	
�

� ðB5Þ
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and

�03D ¼
tanh 2ðK0 þ K00 þ K000Þ

2 cosh 2K

¼
1� �21
� 	

�
� �2 þ �3 þ �4 þ �2�

2
3 þ �2�

2
4 þ �

2
2�3 þ �3�

2
4 þ �

2
2�4

�
þ �23�4 þ �2�

2
3�

2
4 þ �

2
2�3�

2
4 þ �

2
2�

2
3�4 þ 4�2�3�4

	
ðB6Þ

with

� ¼ 1þ F2 þ F4 þ F6 þ F8 ðB7Þ

F2 ¼ �
2
1 þ �

2
2 þ �

2
3 þ �

2
4 þ 4�2�3 þ 4�3�4 þ 4�2�4 ðB8aÞ

F4 ¼ �
2
1�

2
2 þ �

2
1�

2
3 þ �

2
1�

2
4 þ �

2
2�

2
3 þ �

2
3�

2
4 þ �

2
2�

2
4 þ 4�21�2�3

þ 4�21�3�4 þ 4�21�2�4 þ 4�2�3�
2
4 þ 4�2�

2
3�4 þ 4�22�3�4 ðB8bÞ

F6 ¼ �
2
1�

2
2�

2
3 þ �

2
1�

2
3�

2
4 þ �

2
1�

2
2�

2
4 þ �

2
2�

2
3�

2
4 þ 4�21�2�3�

2
4 þ 4�21�2�

2
3�4

þ 4�21�
2
2�3�4 ðB8cÞ

F8 ¼ �
2
1�

2
2�

2
3�

2
4 ðB8dÞ

Employing the equation 1/(1þ x)¼ 1�xþ x2� x3þx4� � � � to expand

1/, one obtains:

1

�
¼ 1� F2 þ F2

2 � F4

� 	
þ 2F2F4 � F6 � F3

2

� 	
þ F2

4 þ 2F2F6 þ F4
2 � F8 � 3F2

2F4

� 	
þ � � � ðB9Þ

Then, one has:

�3D ¼ G1 � G1F2 þ G3ð Þ þ G1F
2
2 � G1F4 þ G3F2 þ G5

� 	
þ 2G1F2F4 � G1F6 � G1F

3
2 � G3F

2
2 þ G3F4 � G5F2 � G7

� 	
þ G1F

2
4 þ 2G1F2F6 þ G1F

4
2 � G1F8 � 3G1F

2
2F4 � 2G3F2F

�
4

þ G3F6 þ G3F
3
2 þ G5F

2
2 � G5F4 þ G7F2

	
ðB10Þ

with

G1 ¼ �1 ðB11aÞ

G3 ¼ �1�
2
2 þ �1�

2
3 þ �1�

2
4 ðB11bÞ

G5 ¼ �1�
2
2�

2
3 þ �1�

2
3�

2
4 þ �1�

2
2�

2
4 ðB11cÞ

G7 ¼ �1�
2
2�

2
3�

2
4 ðB11dÞ
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and

�03D ¼ H1 � ðH1F2 �H3Þ þ ðH1F
2
2 �H1F4 �H3F2 þH5Þ

þ 2H1F2F4 �H1F6 �H1F
3
2 þH3F

2
2 �H3F4 �H5F2 þH7

� 	
þ H1F

2
4 þ 2H1F2F6 þH1F

4
2 �H1F8 � 3H1F

2
2F4 þ 2H3F2F4

�
�H3F6 �H3F

3
2 þH5F

2
2 �H5F4 �H7F2

	
ðB12Þ

with

H1 ¼ �2 þ �3 þ �4 ðB13aÞ

H3 ¼ �2�
2
3 þ �2�

2
4 þ �

2
2�3 þ �3�

2
4 þ �

2
2�4 þ �

2
3�4

þ 4�2�3�4 � �
2
1�2 � �

2
1�3 � �

2
1�4 ðB13bÞ

H5 ¼ �2�
2
3�

2
4 þ �

2
2�3�

2
4 þ �

2
2�

2
3�4 � �

2
1�2�

2
3 � �

2
1�

2
2�3

� �21�2�
2
4 � �

2
1�

2
2�4 � �

2
1�3�

2
4 � �

2
1�

2
3�4 � 4�21�2�3�4 ðB13cÞ

H7 ¼ ��
2
1�2�

2
3�

2
4 � �

2
1�

2
2�3�

2
4 � �

2
1�

2
2�

2
3�4 ðB13dÞ

Then, one can calculate the high-order terms �23D, �
4
3D, �

6
3D, . . . ; � 023D, �

04
3D,

� 063D, . . . ; �23D �
02
3D, �

4
3D �

02
3D, . . . ; �23D �

04
3D, �

4
3D �

04
3D, . . . ; . . .

The left side of the equation above for the partition function is re-written as:

ln l� ln 2 coshK coshK0 coshK00
�

1� �24

� �1=2
" #

¼ ln l� ln 2 coshK coshK0 coshK00 1þ�1 þ�2 þ�3 . . .ð Þ½ 


ðB14Þ

with

�1 ¼
1

2
F2 þ �

2
4

� 	
ðB15aÞ

�2 ¼
1

2
F4 þ

1

4
F2�

2
4 þ

3

8
�44 �

1

8
F2
2 ðB15bÞ

�3 ¼
1

2
F6 þ

1

4
F4�

2
4 þ

3

16
F2�

4
4 þ

5

16
�64 �

1

4
F2F4 �

1

16
F2
2�

2
4 þ

1

16
F3
2 ðB15cÞ

Expanding the expression on the right-hand side of the expression for the partition

function and integrating each term yields:

�
1

2
�23D þ �

02
3D

� 	
þ f2� 023D

� �

�
3

4
�43D þ �

04
3D

� 	
þ 3�23D�

02
3D þ 6f2 �23D�

02
3D þ �

04
3D

� 	
þ 4:5f4� 043D

� �
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�
5

3
�63D þ �

06
3D

� 	
þ 15 �43D�

02
3D þ �

2
3D�

04
3D

� 	
þ 30f2 �43D�

02
3D þ �

06
3D

� 	�

þ 120f2�23D�
04
3D þ 90f4 �23D�

04
3D þ �

06
3D

� 	
þ
100

3
f6� 063D

�
� � � � ðB16Þ

Putting the expansions for �3D and �03D (and also high-order terms) into the

expression (B16), one arrives, after a little algebra, at:

��1 þ �21�
2
2 þ �

2
2�

2
3 þ �

2
1�

2
3

� 	
þ
1

2
�2

1 ��2

� �
þ 16�21�

2
2�

2
3 þ �

4
1�

2
2 þ �

2
1�

4
2 þ �

4
2�

2
3 þ �

2
2�

4
3 þ �

4
3�

2
1 þ �

2
3�

4
1

� 	
þ�1�2 ��3 �

1

3
�3

1

�
ðB17Þ

Re-writing this equation in logarithmic form results in:

ln 1þ�1 þ�2 þ�3 þ � � �ð Þ ðB18Þ

with

�1 ¼ ��1 ðB19aÞ

�2 ¼ �21�
2
2 þ �

2
2�

2
3 þ �

2
1�

2
3

� 	
þ�2

1 ��2 ðB19bÞ

�3 ¼ 16�21�
2
2�

2
3 þ �

4
1�

2
2 þ �

2
1�

4
2 þ �

4
2�

2
3 þ �

2
2�

4
3 þ �

4
3�

2
1 þ �

2
3�

4
1

� 	
þ 2�1�2 ��3 ��3

1 ��1 �
2
1�

2
2 þ �

2
2�

2
3 þ �

2
1�

2
3

� 	
ðB19cÞ

Then, one obtains from (B14) and (B18):

ln l ¼ ln 2 coshK coshK0 coshK00 1þ�1 þ�2 þ�3 þ � � �Þð½

� 1þ�1 þ�2 þ�3 þ � � �ð Þ


¼ ln 2 coshK coshK0 coshK00 1þ �21�
2
2 þ �

2
2�

2
3 þ �

2
3�

2
1

� 	�
16�21�

2
2�

2
3 þ �

4
1�

2
2 þ �

2
1�

4
2 þ �

4
2�

2
3 þ �

2
2�

4
3 þ �

4
3�

2
1 þ �

2
3�

4
1

� 	
þ � � �


�
ðB20Þ

This result fits well with the high-temperature series expansion at the high

temperature limit [93]:

l ¼ Z1=n ¼ 2 coshK coshK0 coshK00 1þ �21�
2
2 þ �

2
2�

2
3 þ �

2
3�

2
1

� 	
þ 16�21�

2
2�

2
3 þ �

4
1�

2
2 þ �

2
1�

4
2 þ �

4
2�

2
3 þ �

2
2�

4
3 þ �

4
3�

2
1 þ �

2
3�

4
1

� 	
þ � � �



:

ðB21Þ

Evidently, (B3a)–(B3c) revert to the first three terms b0, b1 and b2 in (A2) as

K¼K0 ¼K00 (and, thus, �1¼ �2¼ �3¼ �4¼ �). One could try to add more terms A3,

A4, . . .Certainly, such calculations would be very laborious, tedious, and extremely

difficult. Nonetheless, the first three terms look impressive and appear sufficient

to illustrate clearly that the same procedure for (A2) can be generalized to the

general cases of K,0 K00 and K000 and reveal physical significance as well as some

symmetries among the parameters �1, �2, �3 and �4. The addition of the higher terms
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A3, A4, . . . would not add more evident physical significance. All efforts are devoted
to reveal the possibility of elegantly embodying the opening form of infinite terms of
the high-temperature expansion into the square roots of the weights. These weights
can vanish, when the temperature is lowered to deviate from the high-temperature
limit.

The weights wy and wz in the form of the square root embody the opening form
of the high-temperature expansion in infinite terms into a closed form. This is a novel
and elegant method of dealing with the problem of infinite. The combination of this
closed form with the close form of the function in the 4-fold integral produces the
closed-form expressions for the free energy of the 3D Ising model from T¼ 0 to any
finite temperatures and also at infinite temperature.
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(Plenum Press, New York, 1983).

[157] C. Itzykson and J.M. Drouffe, Statistical Field Theory (Cambridge University Press,

Cambridge, 1989).

[158] R.H. Swendsen, in Real Space Renormalization, edited by T.W. Burkhardt and

J.M.J. van Leeuwen (Springer, Berlin, 1982).

[159] J. Zinn–Justin, Phys. Rep. 344, 159 (2001).
[160] B.A. Berg, in Multiscale Phenomena and Their Simulation, edited by F. Karsch,

B. Monien and H. Satz (World Scientific, Singapore, 1997).
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