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1. INTRODUCTION

In this paper, our objective is to begin the study of the changes of the stability for a
system of linear retarded differential difference equations with two delays.

Let us consider the n-dimensional system of linear retarded differential difference equa-
tions with two delays:

ẋ(t) = α Ax(t) + β Bx(t− τ) + γ Cx(t− µ) (1)

( ˙=
d

dt
), where we assume that τ, µ are non-negative real numbers, the parameters α, β, γ

are real numbers and A,B,C are real n× n matrices.
In this work, we study a particular class of such system, it is assumed that the matrices

A, B,C are simultaneously triangulares. The general case will be the subject of our next
study.

We present some results that give us sufficient conditions about these parameters under
which no stability switch occurs. As a consequence of these theorems, we can say that the
stability of the trivial solution for the system (1) is determined only by α, when we have
this parameter sufficiently large. We also introduce a study for the case |α| small.
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256 S.M. TANAKA AKI AND S.M.S. GODOY

Systems of delay differential equations have been investigated in many contexts. For
example, in [6], the dynamical behavior of a two neuron netlet of excitation and inhibition
with a transmission delay is investigated.

We can use linear systems of the form (1) to study the stability of equilibria for a n-
dimensional system of autonomous retarded functional differential equations:

ẋ(t) = f(x(t), x(t− τ), x(t− µ)), (2)

where f : Rn × Rn × Rn → Rn, and are such that solutions to initial value problems exist
and are continuous.

System (2) appears in many applications, for example, see [5]. In this paper, they study a
particular case of this equation, for n = 2, using the Nyquist criterion on the characteristic
equation.

The stability for the two delay equation (2) also has been investigated by many authors.
See, for instance, [1], [9],[7], [8], [10].

Bélair and Campbell, in [2], considered the retarded differential difference equation

ẋ(t) = f1(x(t− T1)) + f2 (x(t− T2)),

where the functions fi(u) = −Ai tanh(u), i = 1, 2(Ai are positive constants), to analyse the
influence of multiple negative feedback loops on the stability of a single-action mechanism.

Now, we are going to study the stability for the solution x = 0 of the equation (1) using
the works by Cooke and van den Driessche[4] and Boese[3].

The Section 2 is dedicated to study a relationship between a particular type of the system
(1) and a first-order delay differential equation which has the form:

ẋ(t) = ax(t) + bx(t− τ) + cx(t− µ), (3)

with a, b, c complex numbers. In this section, we also analyse the characteristic equation
associated to (3) and in the next section, we present our main results that give us conditions
to have unchanged stability for this equation. Such theorems are proved in the Section 4.

One application of all these results is introduced in the Section 5. In this section,
we present some parameters that claim the stability of the origin for a linear system of
differential equations with two delays.

2. THE CHARACTERISTIC EQUATION

In this paper, we require that the matrices A,B,C cited in (1) are simultaneously tri-
angulares. The general case, much more complex, will be the subject of our next study.

Observe that a necessary condition to have simultaneously triangularity is that each
matrix should be triangular. It is not necessary that the matrices A,B, C should be
commutative, however this condition is sufficient to occur the triangularity. This fact is
illustrated with an example in the Section 5.

We suppose that there is a basis B= {u1, u2, ..., un} of Cn so that all the matrices A,B, C
are triangulares.
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PERMANENCE OF STABILITY 257

Therefore, let us consider that exists an invertible matrix P of order n such that:

P−1AP = triang(α1, ..., αn) = A1

P−1BP = triang(β1, ..., βn) = B1

P−1CP = triang(γ1, ..., γn) = C1.

Note that the characteristic equation associated to (1) is:

p(s) = det(sI − αA− βBe−τs − γCe−µs) = 0.

Then,

p(s) = det(sPP−1 − αPA1P
−1 − βe−τsPB1P

−1 − γe−µsPC1P
−1)

= det [P (sI − αA1 − βe−τsB1 − γe−µsC1)P−1]

= det P. det(sI − αA1 − βe−τsB1 − γe−µsC1). detP−1

= det(sI − αA1 − βe−τsB1 − γe−µsC1)

=
n∏

i=1

(s− ααi − βe−τsβi − γe−µsγi) = 0.

Thus, if we are interested on the study of the local stability for the trivial solution(i.e.
the zero solution) of (1), we have to analyse the existence of s ∈ C so that

s− α− βe−τs − γe−µs = 0, (4)

with α, β, γ ∈ C.
Observe that the last equation is the characteristic function of a first-order delay differ-

ential equation which has the form:

ẋ(t) = αx(t) + βx(t− τ) + γx(t− µ), (5)

therefore, we can relate the stability of the trivial solution to our system with the stability
of this solution for such equations.

Throughout this paper, we refer to the stability of a differential equations as the stability
of its trivial solution.

Let us begin to analyse the characteristic equation (4).
If we define the functions P (s) = s−α−γe−µs, Q(s) = −β, the characteristic equation

(4) takes the form:

P (s) + Q(s) e−τs = 0. (6)

To study the equation (6), we use the following result that can be found in [4] and [3]:
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Theorem 2.1. Consider the equation P (λ)+Q(λ) e−λτ = 0, P (λ) and Q(λ) are analytic
functions in <(λ) > 0, and satisfy the following conditions:

(i) P (λ) and Q(λ) have no common imaginary root;
(ii) P (−iy) = P (iy), Q(−iy) = Q(iy) for real y;
(iii) P (0) + Q(0) 6= 0;
(iv) lim sup{|Q(λ)|/|P (λ)| : |λ| → ∞, <(λ) ≥ 0} < 1;
(v) F (y) = |P (iy)|2 − |Q(iy)|2 for real y has at most a finite number of real zeros.

Then the following statements are true:

(a) If F (y) = 0 has no positive roots, then no stability switch may occur.
(b) If F (y) = 0 has at least one positive root and each of them is simple, then as τ

increases, a finite number of stability switches may occur and eventually the considered
equation becomes unstable.

Remark 2. 1. In this work, we only analyse the case that α, β, γ are real constants.
The other case, when α, β, γ are complex numbers, will be done in a forthcoming paper.

Suppose that β 6= 0, α + β + γ 6= 0 and we examine all the hypothesis described in the
Theorem 2.1. First of all, let us show that the items (i) to (iv) are satisfied.

(i) The fact that β 6= 0 implies Q(s) 6= 0 ∀s, and then, P (s) and Q(s) have no common
imaginary roots.

(ii) Observe that P (iy) = iy − α − γ e −µiy, therefore, we get
P (−iy) = P (iy). Also, we have Q(iy) = −β = Q(−iy).

(iii) We have that P (0) = −α − γ and Q(0) = −β. There is,
P (0) + Q(0) = −(α + β + γ) 6= 0.

(iv) It it easy to see that

lim sup
|Q(s)|
|P (s)| =

|β|
|s− α− γe−µs| = 0 : |s| → ∞, <(s) ≥ 0.

Now, we examine the item v) through the next proposition.
We see that

|P (iy)|2 = |iy − α− γ(cos µy − i sin µy)|2
= | − α− γ cos µy + i(y + γ sin µy)|2
= (α + γ cosµy)2 + (y + γ sin µy)2

= α2 + γ2 + y2 + 2αγ cos µy + 2yγ sin µy.

Now, let we define F (y) = |P (iy)|2 − |Q(iy)|2, and so

F (y) = α2 + γ2 + y2 − β2 + 2αγ cos µy + 2yγ sin µy. (7)
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Then, to verify when the item (v) of the Theorem 2.1 is true, we need to search for
conditions under which F (y) has at most a finite number of real zeros. This has been done
in our next result.

Proposition 2.1. The function F (y) defined by (7) has only a finite number of real
roots.

Proof. Observe that

F (y) = 0 ⇔ y2 + (2γ sin µy) y + (α2 + γ2 − β2 + 2αγ cos µy) = 0.

Note that a necessary condition for the existence of a real root y from F (y) is that the
discriminant ∆ should be greater than zero, where

∆ = −4(γ2 cos2 µy + α2 − β2 + 2αγ cos µy).

Therefore, the necessary condition is:

(γ cos µy + α− β) (γ cos µy + α + β) ≤ 0.

Thus, we can have two cases:
Case 1: If γ > 0, the necessary condition is that:

−α + β

γ
≤ cos µy ≤ −α− β

γ
, if β < 0

or
−α− β

γ
≤ cos µy ≤ −α + β

γ
, if β > 0.

Case 2: If γ < 0, the necessary condition is that:

−α− β

γ
≤ cos µy ≤ −α + β

γ
, if β < 0

or
−α + β

γ
≤ cos µy ≤ −α− β

γ
, if β > 0.

Note that

F (y) = 0 if and only if y = −γ sin µy ±
√

β2 − (γ cosµy + α)2.

Consider the functions gi : D(gi) ⊂ R→ R, i = 1, 2, such that:

1. g1(y) = −γ sin µy +
√

β2 − (γ cos µy + α)2,
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2. g2(y) = −γ sin µy −
√

β2 − (γ cos µy + α)2.

Then, F has real zeros if and only if g1(y) or g2(y) intersects f(y) = y.
Now, we analyse the domain of the function gi, i = 1, 2.

Let us suppose that γ > 0. We have seen that if we define a = a(α, β, γ) =
−α− |β|
|γ| and

b = b(α, β, γ) =
−α + |β|
|γ| , then we have D(gi) = {y; a ≤ cos µy ≤ b, a < 1, b > −1},

∀i = 1, 2.
Consider that |β| − |γ| > 0.

1. If α, β, γ satisfy |γ| − |β| ≤ α ≤ |β| − |γ|, then a ≤ −1 and b ≥ 1, that is, D(gi) = R.
2. If α > |β| − |γ|, then a < −1 and b < 1. In this case, there are real numbers

b0 ∈ (0,
π

µ
), b1 ∈ (

π

µ
,
2π

µ
) such that cos(µb0) = cos(µb1) = b. And then, the domain is

D(gi) = ∪k∈Z[b0 + k.
2π

µ
, b1 + k.

2π

µ
].

3. If α < |γ| − |β|, then a > −1 and b > 1. Observe that there are a0, a1, real numbers,

a0 ∈ (0,
π

µ
), a1 ∈ (

π

µ
,
2π

µ
), such that cos(µa0) = cos(µa1) = a. Thus, the domain is

D(gi) = ∪k∈Z{[k.
2π

µ
, a0 + k.

2π

µ
] ∪ [a1 + k.

2π

µ
, (1 + k)

2π

µ
]}.

Now, suppose that |γ| − |β| > 0.

1. If α, β, γ satisfy |β| − |γ| < α < −|β|+ |γ|, then a > −1 and b < 1. In this case, there

are real numbers, a0, b0, belong to the interval (0,
π

µ
), a1, b1 in the interval (

π

µ
,
2π

µ
), b0 <

a0 < a1 < b1 such that cos(µa0) = cos(µa1) = a and cos(µb0) = cos(µb1) = b. And then,

the domain of gi is given by: D(gi) = ∪k∈Z{[b0 +k.
2π

µ
, a0 +k.

2π

µ
]∪ [a1 +k.

2π

µ
, b1 +k.

2π

µ
]}.

2. If α satisfies α ≥ |γ| − |β|, therefore a ≤ −1 and b < 1. As we have studied this case,

D(gi) = ∪k∈Z[b0 + k.
2π

µ
, b1 + k.

2π

µ
].

3. If α ≤ |β| − |γ|, thus a > −1 and b ≥ 1 and, of course, we have that the domain is

D(gi) = ∪k∈Z{[k.
2π

µ
, a0 + k.

2π

µ
] ∪ [a1 + k.

2π

µ
, (1 + k)

2π

µ
]}.

Consider that β, γ such that |β| = |γ|.

1. If α > 0, we have that a < −1 and b < 1, then D(gi) = ∪k∈Z[b0 + k.
2π

µ
, b1 + k.

2π

µ
].

2. If α < 0, then a > −1 and b > 1; thus, we have seen that the domain of gi is

D(gi) = ∪k∈Z{[k.
2π

µ
, a0 + k.

2π

µ
] ∪ [a1 + k.

2π

µ
, (1 + k)

2π

µ
]}.

3. if α = 0, a = −1 and b = 1, then, D(gi) = R.
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Now, we suppose that γ < 0. We have seen that if we define the numbers a = a(α, β, γ) =
α− |β|
|γ| and b = b(α, β, γ) =

α + |β|
|γ| , then the domain is D(gi) = {y; a ≤ cosµy ≤ b, a <

1, b > −1}, ∀i = 1, 2.
Consider that |β| − |γ| > 0.

1. If α, β, γ satisfy |γ| − |β| ≤ α ≤ |β| − |γ|, then a ≤ −1 and b ≥ 1, that is, D(gi) = R.
2. If |β| − |γ| < α < |β| + |γ|, thus a > −1 and b > 1. In this case, we saw that

D(gi) = ∪k∈Z{[k.
2π

µ
, a0 + k.

2π

µ
] ∪ [a1 + k.

2π

µ
, (1 + k)

2π

µ
]}.

3. If −|β| − |γ| < α < |γ| − |β|, therefore a < −1 and b < 1. And then, we have

D(gi) = ∪k∈Z[b0 + k.
2π

µ
, b1 + k.

2π

µ
].

Now, suppose that |β| − |γ| < 0.

1. If α, β, γ satisfy |β| − |γ| < α < −|β| + |γ|, then a > −1 and b < 1. In this case,

D(gi) = ∪k∈Z{[b0 + k.
2π

µ
, a0 + k.

2π

µ
] ∪ [a1 + k.

2π

µ
, b1 + k.

2π

µ
]}.

2. If we take α such that |γ|− |β| ≤ α < |β|+ |γ|, thus a > −1 and b ≥ 1. As we studied

this case, D(gi) = ∪k∈Z{[k.
2π

µ
, a0 + k.

2π

µ
] ∪ [a1 + k.

2π

µ
, (1 + k)

2π

µ
]}.

3. If −|β| − |γ| < α ≤ |β| − |γ|, then a ≤ −1 and b < 1 and of course, the domain is

D(gi) = ∪k∈Z[b0 + k.
2π

µ
, b1 + k.

2π

µ
].

Consider that β, γ such that |β| = |γ|.
1. If α > 0, we have that a > −1 and b > 1; therefore, the domain of gi is D(gi) =

∪k∈Z{[k.
2π

µ
, a0 + k.

2π

µ
] ∪ [a1 + k.

2π

µ
, (1 + k)

2π

µ
]}.

2. If α < 0, then a < −1 and b < 1; thus D(gi) = ∪k∈Z[b0 + k.
2π

µ
, b1 + k.

2π

µ
].

3. if we take α = 0, that is, a = −1 and b = 1; then, D(gi) = R.

To summarize, if we have α, β, γ such that −|β| − |γ| < α < |β|+ |γ|, we get four types
of domain for gi:
Type 1: D(gi) = R. This case holds for parameters which satisfy:

1.1 |β| − |γ| > 0, |γ| − |β| ≤ α ≤ |β| − |γ|, γ 6= 0.
1.2 |β| − |γ| = 0, α = 0, γ 6= 0.

Type 2: D(gi) = ∪k∈Z[b0 + k.
2π

µ
, b1 + k.

2π

µ
], b0 ∈ (0,

π

µ
), b1 ∈ (

π

µ
,
2π
µ

), cos(µb0) =

cos(µb1) = b, where b =
−α + |β|
|γ| , if γ > 0 or b =

α + |β|
|γ| , if γ < 0. This case is true for

the parameters:

2.1 γ > 0, |β| − |γ| > 0, |β| − |γ| < α < |β|+ |γ|.
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2.2 γ > 0, |β| − |γ| < 0, −|β|+ |γ| ≤ α < |β|+ |γ|.
2.3 α.γ > 0, |β| − |γ| = 0.
2.4 γ < 0, |β| − |γ| > 0, −|β| − |γ| < α < |γ| − |β|.
2.5 γ < 0, |β| − |γ| < 0, −|β| − |γ| < α ≤ |β| − |γ|.

Type 3: D(gi) = ∪k∈Z{[k.
2π

µ
, a0+k.

2π

µ
]∪[a1+k.

2π

µ
, (1+k)

2π

µ
]}, a0 ∈ (0,

π

µ
), a1 ∈ (

π

µ
,
2π

µ
),

cos(µa0) = cos(µa1) = a, where we have a =
−α− |β|
|γ| , if γ > 0 or a =

α− |β|
|γ| , if γ < 0.

This case is true for the parameters:

3.1 γ > 0, |β| − |γ| > 0, −|β| − |γ| < α < |γ| − |β|.
3.2 γ > 0, |β| − |γ| < 0, −|β| − |γ| < α ≤ |β| − |γ|.
3.3 α.γ < 0, |β| − |γ| = 0.
3.4 γ < 0, |β| − |γ| > 0, |β| − |γ| < α < |β|+ |γ|.
3.5 γ < 0, |β| − |γ| < 0, |γ| − |β| ≤ α < |β|+ |γ|.

Type 4: D(gi) = ∪k∈Z{[b0 + k.
2π

µ
, a0 + k.

2π

µ
]∪ [a1 + k.

2π

µ
, b1 + k.

2π

µ
]}, a0, a1, b0, b1 as we

defined before. This case is hold for the parameters:

4.1 γ > 0, |β| − |γ| < 0, |β| − |γ| < α < −|β|+ |γ|.
4.2 γ < 0, |β| − |γ| < 0, |β| − |γ| < α < −|β|+ |γ|.
Let us go back to the question of the existence of real zeros for the functions F defined

before. So, we have studied that D (gi) = R or D(gi) is a union of disjoint closed intervals.
Observe that the functions gi are periodic with period 2π/µ and are continuous, then

they are bounded on D (gi) ∩ [ 0, 2π/µ]. So, there exists k ∈ Z+ so that the intersection

points of gi with f(y) = y, y ≥ 0 belong to the interval [ 0, k.
2π

µ
].

We must prove that there exists only a finite number of intersection points between the
functions gi and f(y) = y on the interval [ 0, k.2π/µ], which implies that F (y), y ≥ 0 has
only a finite number of real roots.

Note that the functions gi(y), i = 1, 2 are differentiable in every real y such that

cos(µy) 6= −α + β

γ
and cos(µy) 6= −α− β

γ
.

Therefore, we only need to prove that there are a finite number of intersection points y
between the functions gi, i = 1, 2 and f in [0, k.2π/µ] such that gi are differentiable in y.

If the functions gi(y) are differentiable in y, then

g′i(y) = −γµ cosµy ± γµ sin µy (γ cosµy + α)√
β2 − (γ cos µy + α)2

, i = 1, 2.

Observe that if there exists an infinity number of intersection points between the func-
tions gi(y), i = 1, 2 and f(y) on [ 0, k.2π/µ], then there will be an infinity number of points
y such that g′i(y) = 1 on [ 0, k.2π/µ]. Therefore, we search for points y such that g′i(y) = 1.
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Let γ cosµy = x. By the expression of the derivative of gi, we have that

(1 + µx)2 =
γ2µ2 sin2 µy(x + α)2

β2 − (x + α)2
=⇒ (1 + µx)2 =

µ2(γ2 − x2)(x + α)2

β2 − (x + α)2

which implies that

2µx3+x2(−β2µ2+1+4αµ+µ2γ2)+x(−2µβ2+2α+2µα2+2αµ2γ2)−β2+α2+α2µ2γ2 = 0.

Of course, we obtain at most three real roots x for the above equation. But cos µy=
x

γ
,

and then there exists at most six real y on [ 0, 2π/µ] such that g′i(y) = 1, i = 1, 2. In this
manner, we showed that there is at most 7k real intersection points y between gi(y) and
f(y) = y on [ 0, 2kπ/µ].

Hence, we have proved that there exists only a finite number of intersection points
between the functions gi and f(y) = y on the interval [ 0, 2kπ/µ], and therefore, F (y),
y ≥ 0 has only a finite number of real roots.

3. MAIN RESULTS

In this section, we present some theorems about stability for our system of differential
equations. All these results introduce some sufficient conditions about the parameters
α, β, γ for what the equation (5) have not stability changes. The proofs of these theorems
is given in the next section.

Using the analysis of the preceding section, we can state the following result:

Theorem 3.1. Let us suppose that the parameters α, β, γ satisfy the inequality: |α| ≥
|β|+ |γ|. Then there is no stability switch for the equation (5).

Now, we present a result which considers the parameter |α| small.

Theorem 3.2. Consider the parameters α, β, γ satisfying |α| < |β|+ |γ| and one of the
following conditions:

(i) γ > 0, |β| − |γ| > 0, |β| − |γ| < α < |β|+ |γ|.
(ii) γ > 0, |β| − |γ| < 0, |β| − |γ| < α < −|β|+ |γ|.
(iii) γ < 0, |β| − |γ| < 0, |β| − |γ| < α < −|β|+ |γ|.
(iv) γ > 0, |β| − |γ| < 0, −|β|+ |γ| ≤ α < |β|+ |γ|.
(v) γ < 0, |β| − |γ| > 0, −|β| − |γ| < α < |γ| − |β|.
(vi) γ < 0, |β| − |γ| < 0, −|β| − |γ| < α ≤ |β| − |γ|.
(vii) α.γ > 0, |β| − |γ| = 0.

Define b0 ∈ (0,
π

µ
) such that cos(µb0) = b, where b =

−α + |β|
|γ| , if γ > 0 or b =

α + |β|
|γ| , if

γ < 0. If m =
√

(|β|+ |γ|)2 − α2 < b0, there is no stability switch for the equation (5).
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4. PROOFS OF THE MAIN RESULTS

Proof of Theorem 3.1. Using the analysis that we have done in the proof of the Propo-
sition 2.1, it is easy to see that the result is true for the parameters α, β, γ satisfying the
inequality: |α| > |β|+ |γ|.

First of all, let us prove the theorem when α, β, γ satisfy β > 0, γ > 0, α = β + γ.

Observe that, in this case, we can prove that
−γ − 2β

γ
< −1 which implies that γ cosµy+

α + β > 0. Therefore, ∆ = −4γ(cos µy + 1)(γ cos µy + α + β) ≤ 0 and we have

∆ = 0 ⇔ cosµy + 1 = 0.

If y satisfies cos µy = −1, it is easy to see that F (y) 6= 0. Therefore, with the preceding
studies, we conclude that the function F (y) defined by (7) has not real zeros.

Now, if the parameters α, β, γ is such that β > 0, γ > 0 and α = −β − γ, we get that
γ cos µy + α− β < 0 and γ cos µy + α + β ≤ 0, that is,

∆ ≤ 0 and ∆ = 0 ⇔ cosµy = 1.

We can prove that if y satisfies this last expression, then y is not root of the function F ,
that is, this function has not real zeros.

Finally, the other cases follow in analogous ways.

Now, we consider the cases in which the parameters α, β, γ satisfy
|α| < |β| + |γ|, that is, when F (y) may have real roots and stability switches for the
equation (5) can occur.

Proof of Theorem 3.2. First of all, we analyse the maximum and minimum points of
the functions gi(y), i = 1, 2 in the interval [0, 2π/µ]. To do this, we study all their critical
points.

Remember that the functions gi(y) was defined in Section 2 by:

g1(y) = −γ sin µy +
√

β2 − (γ cosµy + α)2

and

g2(y) = −γ sinµy −
√

β2 − (γ cos µy + α)2.

Suppose that −1 ≤ β − α

γ
≤ 1. Then, there is y0 ∈ [0, 2π/µ] such that cos(µy0) =

β − α

γ
,

that is, gi(y) is not differentiable in y0, ∀i = 1, 2.
As we have gi(y0) = −γ sin(µy0), thus

gi(y0) =
√

γ2 − (β − α)2 or gi(y0) = −
√

γ2 − (β − α)2, i = 1, 2.

Publicado pelo ICMC-USP
Sob a supervisão da CPq/ICMC



PERMANENCE OF STABILITY 265

In an analogous way, if α, β, γ satisfy −1 ≤ −α− β

γ
≤ 1, we take y1 ∈ [0, 2π/µ] such

that cos(µy1) =
−α− β

γ
, that is, gi(y) is not differentiable in y1,∀i = 1, 2, and

gi(y1) =
√

γ2 − (α + β)2 or gi(y1) = −
√

γ2 − (α + β)2, i = 1, 2.

Now, let y ∈ D(g1) (or D(g2)) such that the functions g1 (or g2) is differentiable in this
point and g

′
1(y) = 0 (or g

′
2(y) = 0). Then, we have:

γµ cos µy = ±γµ sin µy(α + γ cosµy)√
β2 − (α + γ cos µy)2

which implies that

cosµy = ± sin µy(α + γ cos µy)√
β2 − (α + γ cos µy)2

.

Therefore, if y is such that g
′
1(y) = 0 or g

′
2(y) = 0, it must satisfy:

β cos(µy) = α + γ cos(µy) or β cos(µy) = −(α + γ cos(µy)).

In this way, if β = γ and we take y such that cos(µy) =
−α

2β
and sin(µy) = −

√
4β2 − α2

2β
,

then we obtain g′1(y) = 0 and g1(y) =
√

4β2 − α2. And more, if we get y such that

cos(µy) =
−α

2β
and sin(µy) =

√
4β2 − α2

2β
, we get g′2(y) = 0 and g2(y) = −

√
4β2 − α2.

In the same case, when β = −γ, we get y such that cos(µy) =
α

2β
and sin(µy) =

√
4β2 − α2

2β
, then we have g′1(y) = 0 and g1(y) =

√
4β2 − α2.

Furthermore, if we take a real number y such that cos(µy) =
α

2β
and sin(µy) =

−
√

4β2 − α2

2β
, we obtain g′2(y) = 0 and g2(y) = −

√
4β2 − α2.

Now, suppose that β 6= γ or β 6= −γ, then, there is a real number y satisfying: cosµy =
α

β − γ
or cosµy =

−α

β + γ
.

Let y be so that cos µy =
α

β − γ
, therefore sin µy = ±

√
(β − γ)2 − α2

|β − γ| . We note that

g′12(y) = −γµ cosµy ± γµ sin µy(α + γ cosµy)√
β2 − (α + γ cos µy)2

= −γµ cosµy ± γµβ cos µy sin µy√
β2(1− cos2 µy)

= −γµ cosµy ± γµβ cos µy sin µy

|β|.| sin µy| = −γµ cos µy (1∓ β sinµy

|β sinµy| ).
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So, if β > 0, we have that g′1(y) = 0 implies that sin µy > 0 and thus sin µy =√
(β − γ)2 − α2

|β − γ| and g′2(y) = 0 follows that sin µy < 0 and so sin µy = −
√

(β − γ)2 − α2

|β − γ| .

If β < 0, we have that g′1(y) = 0 implies that sin µy = −
√

(β − γ)2 − α2

|β − γ| , and g′2(y) = 0

follows that sinµy =

√
(β − γ)2 − α2

|β − γ| .

In an analogous manner, if we take the other case, that is, cos µy = − α

β + γ
, we obtain

the following results:

If β > 0, we have that g′1(y) = 0 implies that sinµy = −
√

(β + γ)2 − α2

|β + γ| and g′2(y) = 0

follows that sinµy =

√
(β + γ)2 − α2

|β + γ| .

If β < 0, we have that g′1(y) = 0 implies that sinµy =

√
(β + γ)2 − α2

|β + γ| and g′2(y) = 0

follows that sinµy = −
√

(β + γ)2 − α2

|β + γ| .

Let us summarize the results above.

(i) Suppose β > 0, y a critical point of g1 such that:

(a) cosµy =
α

β − γ
and sin µy =

√
(β − γ)2 − α2

|β − γ| , then

g1(y) = sgn(β − γ)
√

(β − γ)2 − α2.

(b) cosµy =
−α

β + γ
and sinµy = −

√
(β + γ)2 − α2

|β + γ| , then

g1(y) = sgn(β + γ)
√

(β + γ)2 − α2.

(ii) Suppose β < 0, y a critical point of g1 such that:

(c) cos µy =
α

β − γ
and sin µy = −

√
(β − γ)2 − α2

|β − γ| , then

g1(y) = − sgn(β − γ)
√

(β − γ)2 − α2.

(d) cosµy =
−α

β + γ
and sinµy =

√
(β + γ)2 − α2

|β + γ| , then

g1(y) = − sgn(β + γ)
√

(β + γ)2 − α2.
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(iii) Suppose β > 0, y a critical point of g2 such that:

(e) cos µy =
α

β − γ
and sin µy =

−
√

(β − γ)2 − α2

|β − γ| , then

g2(y) = − sgn(β − γ)
√

(β − γ)2 − α2.

(f) cos µy =
−α

β + γ
and sin µy =

√
(β + γ)2 − α2

|β + γ| , then

g2(y) = − sgn(β + γ)
√

(β + γ)2 − α2.

(iv) Suppose β < 0, y a critical point of g2 such that:

(g) cosµy =
α

β − γ
and sin µy =

√
(β − γ)2 − α2

|β − γ| , then

g2(y) = sgn(β − γ)
√

(β − γ)2 − α2.

(h) cosµy =
−α

β + γ
and sinµy =

−
√

(β + γ)2 − α2

|β + γ| , then

g2(y) = sgn(β + γ)
√

(β + γ)2 − α2.

As a consequence of this analysis, we obtain:
(i) If β > 0, cos µy =

α

β − γ
, we conclude that

g1(y) = sgn (β − γ)
√

(β − γ)2 − α2, and g2(y) = − sgn (β − γ)
√

(β − γ)2 − α2,

(ii) If β > 0, cos µy = − α

β + γ
, we conclude that

g1(y) = sgn (β + γ)
√

(β + γ)2 − α2, and g2(y) = − sgn (β + γ)
√

(β + γ)2 − α2,

(iii) If β < 0, cos µy =
α

β − γ
, we conclude that

g1(y) = − sgn (β − γ)
√

(β − γ)2 − α2, and g2(y) = sgn (β − γ)
√

(β − γ)2 − α2,

(iv) If β < 0, cos µy = − α

β + γ
, we conclude that

g1(y) = − sgn (β + γ)
√

(β + γ)2 − α2, and g2(y) = sgn (β + γ)
√

(β + γ)2 − α2.

Suppose that yi is a critical point of gi, i = 1, 2. Then, we have that:
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¦ if β > 0, g1(y1) satisfy

g1(y1) = sgn (β + γ)
√

(β + γ)2 − α2 or g1(y1) = sgn (β − γ)
√

(β − γ)2 − α2

and for g2(y2), we have

g2(y2) = − sgn (β − γ)
√

(β − γ)2 − α2 or g2(y2) = − sgn (β + γ)
√

(β + γ)2 − α2

¦ if β < 0, g1(y1) satisfy

g1(y1) = − sgn (β + γ)
√

(β + γ)2 − α2 or g1(y1) = − sgn (β − γ)
√

(β − γ)2 − α2

and for g2(y2), we have

g2(y2) = sgn (β − γ)
√

(β − γ)2 − α2 or g2(y2) = sgn (β + γ)
√

(β + γ)2 − α2.

Now, using this study about the maximum and minimum points of the functions gi(y),
i = 1, 2, in the interval [0, 2π/µ], and, of course, in R, we present some cases that guarantee
the non-existence of intersection points between the functions gi and f(y) = y.

Now, let us prove the case (i) for the theorem. As we saw in the proof of the Proposition

2.1, in this case, we have that D(gi) is Type 2, that is, D(gi) = ∪k∈Z[b0 +k.
2π

µ
, b1 +k.

2π

µ
],

with b0 ∈ (0,
π

µ
), b1 ∈ (

π

µ
,
2π

µ
), satisfying cos(µb0) = cos(µb1) =

−α + |β|
γ

.

We can see that the functions gi are not differentiable in b0 and b1, that is, these
numbers are critical points to the gi and they assume the values gi(b0) = −gi(b1) =
−

√
γ2 − (|β| − α)2, i = 1, 2.

Now, we find the others critical points of gi, i = 1, 2.
We have that

α

|β| − γ
> 1, thus there is not y such that cos(µy) =

α

|β| − γ
. We also get

−1 <
−α

|β|+ γ
< 1, therefore there exists y1 ∈ R satisfying cos(µy1) =

−α

|β|+ γ
, thus, y1 is

a critical point of the function gi and g1(y1) = −g2(y1) =
√

(|β|+ γ)2 − α2.
Therefore, using the analysis that we have done before, the maximum and minimum

values of the functions gi, i = 1, 2 should be in the set

{±
√

γ2 − (|β| − α)2,±
√

(|β|+ γ)2 − α2}.

It is easy to see that
√

γ2 − (|β| − α)2 <
√

(|β|+ γ)2 − α2. Thus, if we take

m =
√

(|β|+ γ)2 − α2 < b0,

there is no intersection between the functions gi, i = 1, 2 and f(y) = y in R. To illustrate
this study, we present an example in the Figure 1.
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6

-
b1

x

b0
y1

g1

g2

y

b0

a

b

−b

−a

f(y) = y Figure 1

a =
√

(|β| + γ)2 − α2 b =
√

γ2 − (|β| − α)2

1

Thus, for this case, we proved that the function F (y) defined by (7) does not have real
roots. Now, we prove the theorem for the case (ii). For the other cases, the proofs are
analogous.

We use the analysis about the maximum and minimum points for the functions gi(y),
i = 1, 2, in R that was done for the case (i) above. It is proved that, in this case, there is
no intersection points between the functions gi and f(y) = y.

Observe that, we can use the proof of the Proposition 2.1 to see that, in this case, D(gi)
is Type 4 and it is given by:

D(gi) = ∪k∈Z{[b0 + k.
2π

µ
, a0 + k.

2π

µ
] ∪ [a1 + k.

2π

µ
, b1 + k.

2π

µ
]},

where a0, a1, b0, b1 as we defined in this proposition.
We can see that the functions gi are not differentiable in a0, a1, b0 and b1, that is, these

real numbers are critical points to the gi and

gi(a0) = −gi(a1) = −
√

γ2 − (α + |β|)2,

gi(b0) = −gi(b1) = −
√

γ2 − (|β| − α)2, i = 1, 2.

Now, we find the others critical points of gi, i = 1, 2. We have that −1 <
α

|β| − γ
<

1, thus there is y1 ∈ (0,
π

µ
) such that cos(µy1) =

α

|β| − γ
and g1(y1) = −g2(y1) =

−
√

(|β| − γ)2 − α2.
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We also have −1 <
−α

|β|+ γ
< 1, therefore there exists y2 ∈ (

π

µ
,
2π

µ
) satisfying cos(µy2) =

−α

|β|+ γ
, and g1(y2) = −g2(y2) =

√
(|β|+ γ)2 − α2. Therefore, using the analysis that we

have done before, the maximum and minimum values of the functions gi, i = 1, 2 should
be between the values

±
√

γ2 − (α + |β|)2,±
√

γ2 − (|β| − α)2,±
√

(|β|+ γ)2 − α2 or ±
√

(|β| − γ)2 − α2.

It can be shown that if we take
√

(|β|+ γ)2 − α2 < b0, all the values described above are
less than b0, thus, there is no intersection between the functions gi, i = 1, 2 and f(y) = y
in R. We illustrate all this study with an example in the Figure 2.

6

-
x

y
f(y) = y

b1
a1 y2b0

a0y1

g1

g1

g2

g2

b0

a

b

c

d

−d

−c

−b

−a

Figure 2

a =
√

(|β| + γ)2 − α2

c =
√

γ2 − (|β| − α)2

b =
√

γ2 − (α + |β|)2

d =
√

(|β| − γ)2 − α2

1

Finally, we have proved that the function F (y) defined by (7) has not real roots.

Remark 4. 1. With the same ideas that we have used in the proof of this theorem, one
can find other parameters under which no stability changes occurs.
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5. APPLICATION

As an application of the results obtained in the previous sections, we analyse the equa-
tion:

ẋ(t) = α

(
4 1
−1 2

)
x(t) + β

(
0 1
1 0

)
x(t− τ) + γ

(
2 0
−1 1

)
x(t− µ) (8)

with α, β, γ ∈ R, τ, µ positive real numbers. We denote

A =
(

4 1
−1 2

)
, B =

(
0 1
1 0

)
, C =

(
2 0
−1 1

)
.

Of course, A has a unique eigenvalue given by λ1 = λ2 = 3 and the correspondent eigen-

vectors are v =
(

v1

−v2

)
, with v1, v2 real numbers.

Observe that the eigenvalues of B are: λ1 = 1 and λ2 = −1 and the correspondent

eigenvectors to λ1 are v =
(

v1

v1

)
and the correspondent eigenvectors to λ2 are v =

(
v2

−v2

)
v1, v2 real numbers.

The eigenvalues of C are: λ1 = 2 and λ2 = 1 and the correspondent eigenvectors to

λ1 are v =
(

v1

−v1

)
and the correspondent eigenvectors to λ2 are v =

(
0
v2

)
,v1, v2 real

numbers.

So, if we consider the basis B =
{(

1
−1

)
,

(
0
1

)}
of R2, we have that the triangular

matrices A1, B1, C1, are:

A1 =
(

3 1
0 3

)
, B1 =

( −1 1
0 1

)
, C1 =

(
2 0
0 1

)
.

Remark 5. 1. Observe that this example illustrates the fact that a family of linear
operators does not need be commutative to guarantee the existence of a basis so that each
operator is represented by a triangular matrix.

Using the notation of the Section 2, the characteristic equation associated to (8) is:

p(s) = Π2
i=1(s− ααi − ββi e−τ s − γγi e−µ s) = 0.

In our case, α1 = α2 = 3; β1 = −1; β2 = 1; γ1 = 2; γ2 = 1. Therefore, the characteristic
equation associated to equation (8) is:
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p(s) = (s− 3 α + βe−τ s − 2 γ e−µ s)(s− 3 α− β e−τ s − γ e−µ s) = 0.

So, we obtain

s− 3 α + βe−τ s − 2 γ e−µ s = 0 (9)

or

s− 3 α− β e−τ s − γ e−µ s = 0. (10)

Observe that the equation (9) takes the form P (s) + Q(s) e−τ s = 0, if P (s) = s− 3 α−
2 γ e−µ s and Q(s) = β.

It follows from Theorem 3.1 that if the parameters α, β, γ satisfy α ≥ |β|+ 2|γ|
3

or

α ≤ −|β| − 2|γ|
3

, there will be no stability switch for the equation

ẋ1(t) = 3 α x1(t)− β x1(t− τ) + 2 γ x1(t− µ) (11)

as τ varies.
Note that the equation (10) assumes the form P (s) + Q(s) e−τ s = 0, with P (s) =

s−3α−γe−µ s and Q(s) = −β. Besides, by Theorem 3.1, if α ≥ |β|+ |γ|
3

or α ≤ −|β| − |γ|
3

,

there is no stability switch for the equation

ẋ2(t) = 3 α x2(t) + β x2(t− τ) + γ x2(t− µ) (12)

as τ varies.

Therefore, the conclusion is: if α ≥ |β|+ 2|γ|
3

or α ≤ −|β| − 2|γ|
3

, there is no stability

switch for the equation (8) as τ varies.

Now, we take the parameters α =
7
10

, β = 3 and γ = 1. Of course, these parameters

satisfy the condition (i) of Theorem 3.2 and if we have m =
√

(|β|+ 2γ)2 − 9α2 ' 4.5 < b0,
there is no stability switch for the equation (11). For example, we can have µ < 0.68, and
there is no stability switch for this equation.

Proceeding in the same manner by taking b0 > 3.4, there is no stability switch for the
equation (12). That is, if µ < 0.92, change of stability for this equation does not occur.

So, the conclusion is: if µ < 0.68, there is no stability switches for the system

ẋ(t) =
7
10

Ax(t) + 3 B x(t− τ) + C x(t− µ).

If µ > 0.68, changes of stability can be occur.

Consider again the equation (8). According to the above conclusions, if α ≥ |β|+ 2|γ|
3

or α ≤ −|β| − 2|γ|
3

, there is no stability switch for (8) as τ varies.
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We let now take τ = 0 in the equation (8) and analyse the stability of a system with one
delay µ.

ẋ(t) = D x(t) + γ C x(t− µ), (13)

where D =
(

4 α α + β
−α + β 2 α

)
.

By taking the basis B =
{

(1,−1), (0, 1)
}

, we have that

(D)B =
(

3α− β α + β
0 β + 3α

)
and (C)B =

(
2 0
0 1

)
.

In this manner, the characteristic equation associated to (13) is:

p(s) =
∣∣∣∣s I− 3α− β α + β

0 β + 3α
−γ

2 0
0 1 e−µs

∣∣∣∣ = (s−(3α−β)−2γe−µs)(s−(β+3α)−γe−µs).

Now, we study two cases.

Case 1. Consider s − (3α − β) − 2γe−µs = 0, and define P (s) = s − (3α − β) and
Q(s) = −2γ. By Theorem 2.1, we need to analyse the function

F (s) = |P (iy)|2 − |Q(iy)|2
= |iy − (3α− β)|2 − | − 2γ|2 = y2 + (3α− β)2 − 4γ2.

Case 1.a: Suppose that 2|γ| ≤ 3α− |β|. In this case,

2|γ| ≤ 3α− |β| < 3α− β ≤ |3α− β|, if β 6= 0.

Case 1.b: Suppose 2|γ| ≤ −3α− |β|. If β > 0, it follows that

2|γ| ≤ −3α− β < −3α + β ≤ | − 3α + β| = |3α− β|.

When β < 0, using the fact that γ 6= 0, it follows that

2|γ| ≤ −3α + β < |3α− β|.

Anyway, if β 6= 0, 2|γ| < |3α − β| implies that (3α − β)2 − 4γ2 > 0. Then, F (y) =
y2 + (3α− β)2 − 4γ2 has no positive roots. So, as τ varies there is no stability switch.
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Case 2. Assume that s−(β+3α)−γe−µs = 0. In this case, we take P (s) = s−(β+3α)
and Q(s) = −γ. So,

F (y) = |P (iy)|2 − |Q(iy)|2 = |iy − (3α + β)|2 − γ2 = y2 + (3α + β)2 − γ2.

Case 2.a: Suppose that 2|γ| ≤ 3α− |β|. Then,

|γ| ≤ 2|γ| ≤ 3α− |β| < 3α + β ≤ |3α + β|, with β 6= 0.

Case 2.b: Suppose 2|γ| ≤ −3α− |β|. Then if β > 0, we have that

|γ| ≤ 2|γ| ≤ −3α + β < −3α− β ≤ |3α + β|.

If β < 0, we obtain that

|γ| < 2|γ| ≤ −3α− β ≤ |3α + β|.

Anyway, it follows that|γ| < |3α + β| implies that (3α + β)2 − γ2 > 0, and then F (y) has
no positive roots. So, there is no stability switch as µ varies.

Now, we analyse the stability for µ = 0, that is, the system is:

ẋ(t) = E x(t), (14)

where E =
(

3α− β + 2γ α + β
0 β + 3α + γ

)
. Of course, the eigenvalues of the matrix E are

λ1 = 3α− β + 2γ and λ2 = β + 3α + γ.

We will consider the cases:
Case 1. Suppose 3α− |β| ≥ 2|γ|.

Case 1.a: If β > 0, 3α− β ≥ 2|γ|.
Case 1.a.i: If γ > 0, λ2 = 3α + β + γ ≥ 3γ + 2β > 0.

Case 1.a.ii: If γ < 0, then λ2 = 3α + β + γ ≥ 2β − γ > 0.

Case 1.b: If β < 0, 3α + β ≥ 2|γ|.
Case 1.b.i: If γ > 0, λ2 = 3α + β + γ ≥ 3γ > 0.

Case 1.b.ii: If γ < 0, λ2 = 3α + β + γ ≥ −γ > 0.

Anyway, note that if the parameters α, β, γ satisfy 3α − |β| ≥ 2|γ|, the equation (14) is
unstable.

Case 2. Suppose 3α + |β| ≤ −2|γ|.

Publicado pelo ICMC-USP
Sob a supervisão da CPq/ICMC



PERMANENCE OF STABILITY 275

Case 2.a: If β > 0, 3α + β ≤ −2|γ|, λ1 = 3α− β + 2γ ≤ −2|γ| − 2β + 2γ = 2(γ − |γ| − β)
and λ2 = 3α + β + γ ≤ −2|γ|+ γ.

Case 2.a.i: If γ > 0, λ1 ≤ 2(γ − |γ| − β) = −2β < 0, and λ2 ≤ −γ < 0.

Case 2.a.ii: If γ < 0, λ1 ≤ 2(2γ − β) < 0, and λ2 ≤ 3γ < 0.

Case 2.b. If β < 0, 3α−β ≤ −2|γ|, λ1 = 3α−β +2γ ≤ 2(γ−|γ|), and λ2 = 3α+β +γ ≤
β − 2|γ|+ β + γ = 2β + (γ − 2|γ|).

Case 2.b.i: If γ < 0, λ1 ≤ 4γ < 0, and λ2 ≤ 2β + 3γ < 0.

Case 2.b.ii: If γ > 0, λ1 ≤ 0, and λ2 ≤ 2β − γ < 0.

Therefore, when the parameters α, β, γ satisfy 3α + |β| ≤ −2|γ|, the system (14) is stable.
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