stefanzan分享 http://blog.sciencenet.cn/u/stefanzan

博文

JavaScript机器学习之线性回归

已有 388 次阅读 2017-7-3 11:29 |个人分类:debug|系统分类:博客资讯

译者按: AI时代,不会机器学习的JavaScript开发者不是好的前端工程师。

原文: Machine Learning with JavaScript : Part 1

译者: Fundebug

为了保证可读性,本文采用意译而非直译。另外,本文版权归原作者所有,翻译仅用于学习

使用JavaScript做机器学习?不是应该用Python吗?是不是我疯了才用JavaScript做如此繁重的计算?难道我不用Python和R是为了装逼?scikit-learn(Python机器学习库)不能使用Python吧?

嗯,我并没有开玩笑…

其实呢,类似于Python的scikit-learn,JavaScript开发者也开发了一些机器学习库,我打算用一下它们。

JavaScript不能用于机器学习?

  1. 太慢(幻觉?)

  2. 矩阵操作太难(有函数库啊,比如math.js

  3. JavaScript只能用于前端开发(Node.js开发者笑了)

  4. 机器学习库都是Python(JS开发者)

JavaScript机器学习库

  1. brain.js (神经网络)

  2. Synaptic (神经网络)

  3. Natural (自然语言处理)

  4. ConvNetJS (卷积神经网络)

  5. mljs (一系列AI库)

  6. Neataptic (神经网络)

  7. Webdnn (深度学习)

我们将使用mljs来实现线性回归,源代码在GitHub仓库: machine-learning-with-js。下面是详细步骤:

1. 安装模块

$ yarn add ml-regression csvtojson

或者使用 npm

$ npm install ml-regression csvtojson

2. 初始化并导入数据

下载.csv数据

假设你已经初始化了一个NPM项目,请在index.js中输入以下内容:

const ml = require("ml-regression");
const csv = require("csvtojson");
const SLR = ml.SLR; // 线性回归
const csvFilePath = "advertising.csv"; // 训练数据
let csvData = [],
   X = [],
   y = [];
let regressionModel;

使用csvtojson模块的fromFile方法加载数据:

csv()
   .fromFile(csvFilePath)
   .on("json", (jsonObj) => {
       csvData.push(jsonObj);
   })
   .on("done", () => {
       dressData();
       performRegression();
   });

3. 转换数据

导入的数据为json对象数组,我们需要使用dressData函数将其转化为两个数据向量xy:

// 将JSON数据转换为向量数据
functiondressData() {
/**
    * 原始数据中每一行为JSON对象
    * 因此需要将数据转换为向量数据,并将字符串解析为浮点数
    * {
    *   TV: "10",
    *   Radio: "100",
    *   Newspaper: "20",
    *   "Sales": "1000"
    * }
    */
   csvData.forEach((row) => {
       X.push(f(row.Radio));
       y.push(f(row.Sales));
   });
}
// 将字符串解析为浮点数
functionf(s) {
returnparseFloat(s);
}

4. 训练数据并预测

编写performRegression函数:

// 使用线性回归算法训练数据
functionperformRegression() {
   regressionModel = new SLR(X, y);
console.log(regressionModel.toString(3));
   predictOutput();
}

regressionModeltoString方法可以指定参数的精确度。

predictOutput函数可以根据输入值输出预测值。

// 接收输入数据,然后输出预测值
functionpredictOutput() {
   rl.question("请输入X用于预测(输入CTRL+C退出) : ", (answer) => {
console.log(`当X = ${answer}时, 预测值y = ${regressionModel.predict(parseFloat(answer))}`);
       predictOutput();
   });
}

predictOutput函数使用了Node.js的Readline模块:

const readline = require("readline");
const rl = readline.createInterface({
input: process.stdin,
output: process.stdout
});

5. 完整程序

完整的程序index.js是这样的:

const ml = require("ml-regression");
const csv = require("csvtojson");
const SLR = ml.SLR; // 线性回归
const csvFilePath = "advertising.csv"; // 训练数据
let csvData = [],
   X = [],
   y = [];
let regressionModel;
const readline = require("readline");
const rl = readline.createInterface({
input: process.stdin,
output: process.stdout
});
csv()
   .fromFile(csvFilePath)
   .on("json", (jsonObj) => {
       csvData.push(jsonObj);
   })
   .on("done", () => {
       dressData();
       performRegression();
   });
// 使用线性回归算法训练数据
functionperformRegression() {
   regressionModel = new SLR(X, y);
console.log(regressionModel.toString(3));
   predictOutput();
}
// 将JSON数据转换为向量数据
functiondressData() {
/**
    * 原始数据中每一行为JSON对象
    * 因此需要将数据转换为向量数据,并将字符串解析为浮点数
    * {
    *   TV: "10",
    *   Radio: "100",
    *   Newspaper: "20",
    *   "Sales": "1000"
    * }
    */
   csvData.forEach((row) => {
       X.push(f(row.Radio));
       y.push(f(row.Sales));
   });
}
// 将字符串解析为浮点数
functionf(s) {
returnparseFloat(s);
}
// 接收输入数据,然后输出预测值
functionpredictOutput() {
   rl.question("请输入X用于预测(输入CTRL+C退出) : ", (answer) => {
console.log(`当X = ${answer}时, 预测值y = ${regressionModel.predict(parseFloat(answer))}`);
       predictOutput();
   });
}

执行 node index.js ,则输出如下:

$ node index.js
f(x) = 0.202 * x + 9.31
请输入X用于预测(输入CTRL+C退出) : 151.5
当X = 151.5时, 预测值y =  39.98974927911285
请输入X用于预测(输入CTRL+C退出) :

恭喜!你已经使用JavaScript训练了一个线性回归模型,如下:

f(x) = 0.202 * x + 9.31

感兴趣的话,请持续关注 machine-learning-with-js,我将使用JavaScript实现各种机器学习算法。

欢迎加入我们Fundebug全栈BUG监控交流群: 622902485




版权声明:

转载时请注明作者Fundebug以及本文地址:

https://blog.fundebug.com/2017/07/03/javascript-machine-learning-regression/




http://blog.sciencenet.cn/blog-811611-1064317.html

上一篇:Fundebug能够捕获这些BUG
下一篇:12个必备的JavaScript装逼技巧
收藏 分享 举报

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备14006957 )

GMT+8, 2017-9-22 06:51

Powered by ScienceNet.cn

Copyright © 2007-2017 中国科学报社

返回顶部