xiaox095的个人博客分享 http://blog.sciencenet.cn/u/xiaox095

博文

空气热氧化修饰生物炭吸附PFAS

已有 1027 次阅读 2023-3-5 04:56 |系统分类:论文交流

ACS ES&T Engineering

链接:https://pubs.acs.org/doi/full/10.1021/acsestengg.2c00271

Exposure to per- and polyfluoroalkyl substances (PFAS) in drinking water poses a major public health threat. Commercial granular activated carbon (GAC) has been used for the sorptive removal of PFAS in practical applications. Biochar is a possible cheaper alternative to GAC for small-scale water treatment systems. Here, we report a strategy for employing biochar for PFAS removal that combines post-pyrolysis modification, which greatly improves performance, with a reactivation step that enables its reuse. Modification entails brief postpyrolysis air oxidation at 400 °C, which considerably enlarges pore size and specific surface area and thereby increases the solid-to-water distribution ratio, KD, of individual PFAS by as much as 3 orders of magnitude. In some cases (e.g., perfluorooctanoic acid) the KD was comparable to that of commercial GAC. The sorbed PFAS could be decomposed by brief thermal reactivation of the spent biochar at 500 °C in N2 or air. After thermal reactivation in air, the biochars exhibited even greater PFAS KD values in a second cycle. While thermal reactivation of a GAC in air could be achieved, as well, sorption affinity for the shorter-chain PFAS was noticeably reduced. Overall, this study points to a new strategy of using biochars for PFAS removal.




https://blog.sciencenet.cn/blog-758989-1378927.html

上一篇:PFAS在地下水的迁移和归趋的综述
下一篇:生物炭孔隙和表面化学修饰处理PFAS污染的水
收藏 IP: 128.206.17.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-4-28 14:07

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部