Chenfiona的个人博客分享 http://blog.sciencenet.cn/u/Chenfiona

博文

综述:自主式水下机器人的路径规划算法

已有 123 次阅读 2020-7-3 10:47 |个人分类:好文推荐|系统分类:论文交流| 水下自主式机器人, 机器人

自主式水下机器人(AUV)是一种工作于水下、具有智能行为的作业机器人,其主要由自动驾驶、导航定位、自诊断和故障处理、测量设备和能源等组成,被广泛应用于军事和民用领域。本文旨在定性分析海洋环境对AUVs路径规划的影响。以可预测和不可预测的环境行为模型为参考,本文总结了应用于单AUV和多AUVs的路径规划算法,简要讨论了AUV路径规划中涉及的问题,从环境类型、生成路径类型、路径成本(path cost)和防撞特性(collision avoidance features)等方面对算法进行了比较,并讨论了各种方法的优缺点。


Springer.jpg

      全文下载(开放获取)

       https://link.springer.com/article/10.1007/s11633-019-1204-9


image.png

自主式水下机器人(Autonomous underwater vehicles, AUVs)是由“无人水下机器人”(unmanned underwater vehicles, UUVs)构成的一组水下系统(submerged systems)。无人水下机器人可分为自主式水下机器人和无人遥控潜水器(remotely operated vehicle, ROV)两类。无人潜水遥控器由地面控制站(surface control station)通过电缆(umbilical cord)或遥控装置(remote control)对其进行供能、完成操作。


自主式水下机器人则独立搭载了供能装置(onboard power supply),其大多为圆柱形,没有电缆连接(attached cables)。自主式水下机器人外形设计多样、大小规模各异,是一种高度非线性机器船(highly nonlinear robotic vessel),受流体动力阻尼因子(hydrodynamic damping factors)的影响,其动力方程(dynamic equation)包含平方项(square terms)。


1.png

图片来自网络


AUV可同时实现水面及水下操作,通过一小步一小步改变浮力(buoyancy)来完成移动(propagate),将合成竖向位移(resultant vertical displacement)转换成水平位移(horizontal movement)。这些操作需借助地面控制站及水体间(water column)的互动才可完成。


运动规划(motion planning)与路径规划(path planning)、轨迹规划(trajectory planning)联系紧密。路径规划(path planning)即找到AUV从起点到终点(predefined destination)需要经过的所有点位(course of points),而AUV整个行进过程中的时间推移(time history)则被称为轨迹规划(trajectory planning)。AUV导航(navigation)在路径规划中非常重要。


通常,水下环境中,航行器无法获得任何外部通讯及GPS信号。因此,在没有方向信息及动力供能受限的前提下,AUV很难朝着理想目标(desired target)前进。有关AUV导航的三种主流方法包括:航迹推算及惯性导航系统(deadreckoning and inertial navigation systems, DR-INS)、水声导航(acoustic navigation)、地球物理导航(geophysical navigation)。


插图1.jpg

图片来自论文


通过查阅AUV导航相关文献,我们可以区分三个不同问题:近地表导航(close-to-surface navigation)、中深度区域导航(navigation in the mid-depth zone)、近底导航(close-to-bottom navigation)。


在路径规划控制问题(path planning control (PPC) problem)上,AUV必须在没有时间约束(without temporal constraints)的情况下穿过收敛路径(traverse a convergent path)。此前关于轮式机器人(wheeled robots)的PPC研究主要关注两个问题:路径参数化(path parameterization)、路径终点(termination point)选择。


插图2.jpg

图片来自论文


目前,已有研究者设计出自主水面舰艇(autonomous surface craft, ASC)及AUV协同操作(coordinated operation)控制系统,该系统结合了轨迹跟踪(trajectory tracking)及路径规划控制(path planning control)。


水下环境对于AUV的路径规划十分重要。海洋中存在诸多挑战因素,如大气(atmospheric factors)、海岸(coastal factors)、重力因素(gravitational factors)。大气因素包括风、阳光、降水,海岸因素与河流、冰川相关,重力因素包括地球自转、海床、潮汐。AUV航行主要受风浪、风、洋流的影响。


在确定路径(path determination)时,应更多考虑洋流带来的影响。尽管海洋环境变化莫测,但有时可通过预估环境因素带来的影响,近似得到一个可预测的水下环境行为模型(predictable behavioral model)。当环境中的变化不确定或未知时,环境被认为是不可预测的。因此,水下环境同时具有可预测性(predictable)和不可预测性(unpredictable)。


插图3.jpg

图片来自论文


本文旨在定性分析海洋环境对AUVs路径规划的影响。基于路径规划近似(path planning approximations),水下环境同时具有可预测性和不可预测性,本文以可预测和不可预测的环境行为模型为参考,总结了应用于单AUV和多AUVs的路径规划算法,简要讨论了AUV路径规划中涉及的问题,从环境类型、生成路径类型、路径成本(path cost)和防撞特性(collision avoidance features)等方面对算法进行了比较,并大致讨论了各种方法的优缺点。


这些方法生成的路径类型可分为时间最优(时间最小解time minimal solution)、能量最优(能量最小解energy minimal solution)、次优(接近最优解near optimal solution)和最优(最佳可能解best possible solution)。路径成本划分为低成本、中成本、高成本三档。碰撞与障碍物规避划分为实现规避(achieved)、有限规避(limited)和规避不足(poor)三类。


基于本研究,我们可以得出结论:以往研究并没有很好地解决不可靠问题(unreliability),而此前针对AUV动力学和工作环境所提出的诸多假设,仍需展开批判性分析,以确保其在真实场景中的稳定性。因此,未来应提出一些计算高效、可实际应用于AUVs当中的优化算法。


本文内容框架如下:

第二部分综述了单AUV完成路径规划任务时采取的不同方法;

第三部分描述了多AUVs路径规划策略;

第四部分是本文结论。


注:以上内容系IJAC小编编译,因文章专业性较强,如有翻译不当之处,欢迎后台批评指正!

image.png

image.png

A Comprehensive Review of Path Planning Algorithms for Autonomous Underwater Vehicles

Madhusmita Panda, Bikramaditya Das, Bidyadhar Subudhi, Bibhuti Bhusan Pati

摘要:

The underwater path planning problem deals with finding an optimal or sub-optimal route between an origin point and a termination point in marine environments. The underwater environment is still considered as a great challenge for the path planning of autonomous underwater vehicles (AUVs) because of its hostile and dynamic nature. The major constraints for path planning are limited data transmission capability, power and sensing technology available for underwater operations. The sea environment is subjected to a large set of challenging factors classified as atmospheric, coastal and gravitational. Based on whether the impact of these factors can be approximated or not, the underwater environment can be characterized as predictable and unpredictable respectively. The classical path planning algorithms based on artificial intelligence assume that environmental conditions are known apriori to the path planner. But the current path planning algorithms involve continual interaction with the environment considering the environment as dynamic and its effect cannot be predicted. Path planning is necessary for many applications involving AUVs. These are based upon planning safety routes with minimum energy cost and computation overheads. This review is intended to summarize various path planning strategies for AUVs on the basis of characterization of underwater environments as predictable and unpredictable. The algorithms employed in path planning of single AUV and multiple AUVs are reviewed in the light of predictable and unpredictable environments.

关键词:

Autonomous underwater vehicle (AUV), cooperative motion, formation control, optimization, path planning (PP).

全文下载(开放获取)

http://www.ijac.net/en/article/doi/10.1007/s11633-019-1204-9 

https://link.springer.com/article/10.1007/s11633-019-1204-9 


image.png

Stability Analysis of an Underactuated Autonomous Underwater Vehicle Using Extended-Routh's Stability Method
Basant Kumar Sahu,  Bidyadhar Subudhi,  Madan Mohan Gupta
http://www.ijac.net/en/article/doi/10.1007/s11633-016-0992-4 
https://link.springer.com/article/10.1007/s11633-016-0992-4 



A Survey of Scene Understanding by Event Reasoning in Autonomous Driving

Jian-Ru Xue,  Jian-Wu Fang,  Pu Zhang
http://www.ijac.net/en/article/doi/10.1007/s11633-018-1126-y 
https://link.springer.com/article/10.1007/s11633-018-1126-y 

中文导读:

【综述专栏】薛建儒: 自动驾驶的场景理解研究 


 

Deep Learning Based Hand Gesture Recognition and UAV Flight Controls

Bin Hu, Jiacun Wang.

http://www.ijac.net/en/article/doi/10.1007/s11633-019-1194-7 

https://link.springer.com/article/10.1007/s11633-019-1194-7 

中文导读:

美国蒙莫斯大学:基于深度学习的手势识别及无人机控制 



Unmanned Aerial Vehicle Formation Inspired by Bird Flocking and Foraging Behavior

Tian-Jie Zhang
http://www.ijac.net/en/article/doi/10.1007/s11633-017-1111-x 

https://link.springer.com/article/10.1007/s11633-017-1111-x 



Stability Analysis of an Underactuated Autonomous Underwater Vehicle Using Extended-Routh's Stability Method
Basant Kumar Sahu,  Bidyadhar Subudhi,  Madan Mohan Gupta
http://www.ijac.net/en/article/doi/10.1007/s11633-016-0992-4 
https://link.springer.com/article/10.1007/s11633-016-0992-4 



A New Approach to Estimate True Position of Unmanned Aerial Vehicles in an INS/GPS Integration System in GPS Spoofing Attack Conditions

Mohammad Majidi,  Alireza Erfanian,  Hamid Khaloozadeh
http://www.ijac.net/en/article/doi/10.1007/s11633-018-1137-8 
https://link.springer.com/article/10.1007/s11633-018-1137-8 


image.png

哈工大高会军团队: 基于强化学习的多速率系统控制器最优化研究

【程学旗&陈恩红团队】社交网络的传播背景:模拟与建模

高被引Top1团队综述:图像、图形及文本领域的对抗攻击及防御

【精选好文】服务机器人物品归属关系学习新策略

【专题好文】基于神经网络的新型乳腺癌检测框架

综述:用于自由曲面加工的新型计算机数控方法

港科大-微众AI杨强团队:用于生成对话系统的迁移多层注意力网络

美国蒙莫斯大学:基于深度学习的手势识别及无人机控制

陶建华团队:基于半监督梯形网络的语音情感识别

帝国理工学院:自然语言处理中大数据的智能收集与分析

北大王立威团队: 零样本细粒度图像分析新模型

自动化所陶建华团队: 基于真实环境的面部表情分析

英国克兰菲尔德大学: 用于故障监测与诊断的全新多层分析算法

【综述】美外籍院士Brian Anderson: 社交网络中舆论动力学研究进展



image.png

2020年7月会议变动汇总

2020年6月会议变动汇总
2020年5月会议变动汇总
2020年4月会议变动汇总
2020年3月会议 & 科技部新政速览
2020年1-2月会议日历
2020年国际学术会议参考列表



image.png

【名校好课】MIT最新深度学习公开课

一款强大的公式编辑器
如何在不平坦的科研路上狂奔?
复杂公式转LaTex:一张图片,三步搞定!
提升科研效率的几款小工具
【主编报告】如何写好一篇学术论文?


image.png



http://blog.sciencenet.cn/blog-749317-1240442.html

上一篇:2020年7月会议变动汇总
下一篇:10mins微课 | 英语论文写作高频错误: 小冠词の大不同

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2020-8-4 02:57

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部