如何实现Majorana Fermion是现在凝聚态、原子光学等领域最火的一个方向。2011年APS March meeting有好几个会场都是和Majorana Fermion有关,当时很多人提出了各种模型号称可以观察到Majorana Fermion,在2012年APS March meeting就有好几个组报道了Majorana存在的证据。当然在我看来,有些结果可能是打酱油的。在这个领域里面, 有很多中国人在做,比如Fu Liang@Harvard, Yi Cui@Standford等等,其中Fu Liang的贡献最大。在国内Qi Kun Xue@Tsinghua做实验做得很好。我很佩服,因为Xue老师能够以最快的速度把握最前沿的研究方向。其实,国内的大学里面很牛的人很多,但是大部分都不能抓住前沿方向,自从回国以后就一直停留在自己以前做的方向,殊不知前沿的东西总是在变化,于是越做越艰难,越做越不能发好文章。当然这些是题外话,有感而发。这个领域进展神速,我差点就掉队了,不过幸好今年也做了几个个关于Majorana Fermion的理论工作,其中两个是半导体纳米线的,一个是冷原子的。不过每天浏览arxiv,基本上都可以看到关于Majorana的文章,有时候今天有了一个想法,明天就看到别人的文章贴出来了,想想,还是很惊心动魄的。
Eq. 1的反解可以得到 b = a + a+, c = i (a - a+) 我们可以定义a = h+, 也就是说,利用电子-空穴关系,这样我们有 b = a + h, c = i(a - h) 这个结果表明,每个Majorana粒子包括了等权重的电子(particle)-空穴(hole). 所以总的电荷等于0.这也是为什么Majorana Fermion最早用于描述中微子的原因。由于总的电荷等于0,所以它不应该耦合电磁场。
既然很难实现,那么是否有其它可能的方法?这个进展一个很有趣的想法是自旋轨道耦合+s-wave超导等价于一个p-wave超导体。它又激发了大家一轮新的讨论, 从2010年到现在,大量的工作都和这个想法有关。Chuanwei Zhang@WSU在2008年首先在冷原子中意识到了这个关系,后来在2010年被他的同事(Jay D. Sau et al) 应用到纳米线中(利用了proximity effect, Liang Fu在里面做了很多工作). 需要注意这个关系其实Rashba等人早就意识到了,它做了一个坐标变化于是得到了single pairing和triplet pairing, 但是他没有把它和拓扑相变以及Majorana联系在一起,于是和这么重要的发现失之交臂,可惜可惜。