大工至善|大学至真分享 http://blog.sciencenet.cn/u/lcj2212916

博文

[转载]【无人机】【含源码】仿真自主车辆控制的深度强化学习

已有 232 次阅读 2019-11-12 17:25 |系统分类:科研笔记|文章来源:转载

我们研究通过强化学习来使用深度Q学习控制模拟自主车辆。我们首先实现了文献[5]提出的方法,然后尝试各种可能的更改,以提高所选任务的性能。特别是,我们实验了各种奖励函数来诱导特定的驾驶行为、双Q学习、梯度更新规则和其他超参数。我们发现在某些方面能够成功地训练一个代理来控制Javascript Racer [3]中的模拟车辆。我们的智能体成功地学会了转弯操作,逐步获得了在模拟赛道上长时间行驶而不撞车的能力。然而,在障碍规避方面,仍然面临着挑战,我们怀疑这是由于训练时间不足的原因。

 

We investigate the use of Deep Q-Learningto control a simulated car via reinforcement learning. We start by implementingthe approach of [5] ourselves, and then experimenting with various possiblealterations to improve performance on our selected task. In particular, weexperiment with various reward functions to induce specific driving behavior,double Q-learning, gradient update rules, and other hyperparameters. We find weare successfully able to train an agent to control the simulated car inJavaScript Racer [3] in some respects. Our agent successfully learned theturning operation, progressively gaining the ability to navigate largersections of the simulated raceway without crashing. In obstacle avoidance,however, our agent faced challenges which we suspect are due to insufficienttraining time.


更多精彩文章请关注公众号:qrcode_for_gh_60b944f6c215_258.jpg




http://blog.sciencenet.cn/blog-69686-1205889.html

上一篇:[转载]【信息技术】【2011.12】【含源码】移动通信系统中语音信号的压缩感知
下一篇:[转载]【信息技术】【2012.12】基于视觉的车辆计数检测跟踪监控系统框架

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备14006957 )

GMT+8, 2019-12-12 13:36

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部