||
本文为英国爱丁堡大学(作者:IainDavid Graham Macdonald)的硕士论文,共81页。
这篇论文模拟了一辆自行驾驶汽车在城市公路上行驶的场景,该系统是以TORCS为基础设计的开源赛车模拟器。本文实现了两个实时解决方案:一个使用神经网络的反应原型和一个更复杂的基于感觉、规划和动作结构的方法。显示系统使用视觉数据模拟激光距离数据来准确检测路径标记,检测到的道路标记被用于规划抛物线路径,并计算车辆的安全速度。车辆使用一种模拟的全球定位/惯性测量传感器,以制动器、比例控制器控制该传感器,以引导该车辆沿着所希望的路径行进。该自主车辆可以可靠地导航测试轨迹,保持在一个安全的道路位置上,最大行驶速度可以达到每小时40公里。
This dissertation describes a simulatedautonomous car capable of driving on urbanstyle roads. The system is builtaround TORCS, an open source racing car simulator. Two real-time solutions areimplemented; a reactive prototype using a neural network and a more complexdeliberative approach using a sense, plan, act architecture. The deliberativesystem uses vision data fused with simulated laser range data to reliablydetect road markings. The detected road markings are then used to plan aparabolic path and compute a safe speed for the vehicle. The vehicle uses asimulated global positioning/inertial measurement sensor to guide it along thedesired path with the throttle, brakes, and steering being controlled usingproportional controllers. The vehicle is able to reliably navigate the testtrack maintaining a safe road position at speeds of up to 40km/h.
更多精彩文章请关注公众号:
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-23 15:11
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社