CZC的个人博客分享 http://blog.sciencenet.cn/u/CZC

博文

年终盘点:2019年睡眠和失眠领域十大研究突破​

已有 3011 次阅读 2020-1-12 14:25 |个人分类:神经科学临床和基础|系统分类:科研笔记

2019年睡眠和失眠领域十大研究突破

 

1. Nat Genet—失眠是遗传的吗?全基因组关联研究发现一系列和人类失眠相关的基因变异

英文摘要1

Insomniais a common disorder linked with adverse long-term medical and psychiatricoutcomes. The underlying pathophysiological processes and causal relationshipsof insomnia with disease are poorly understood. Here we identified 57 loci forself-reported insomnia symptoms in the UK Biobank (n = 453,379) and confirmedtheir effects on self-reported insomnia symptoms in the HUNT Study (n = 14,923cases and 47,610 controls), physician-diagnosed insomnia in the PartnersBiobank (n = 2,217 cases and 14,240 controls), and accelerometer-derivedmeasures of sleep efficiency and sleep duration in the UK Biobank (n = 83,726). Ourresults suggest enrichment of genes involved in ubiquitin-mediated proteolysisand of genes expressed in multiple brain regions, skeletal muscle, and adrenalglands. Evidence of shared genetic factors was found between frequent insomniasymptoms and restless legs syndrome, aging, and cardiometabolic, behavioral,psychiatric, and reproductive traits. Evidence was found for a possible causallink between insomnia symptoms and coronary artery disease, depressivesymptoms, and subjective well-being.

英文摘要2

Insomniais the second most prevalent mental disorder, with no sufficient treatmentavailable. Despite substantial heritability, insight into the associated genesand neurobiological pathways remains limited. Here, we use a large geneticassociation sample (n = 1,331,010) to detect novel loci and gain insight intothe pathways, tissue and cell types involved in insomnia complaints. Weidentify 202 loci implicating 956 genes through positional, expressionquantitative trait loci, and chromatin mapping. The meta-analysis explained2.6% of the variance. We show gene set enrichments for the axonal part ofneurons, cortical and subcortical tissues, and specific cell types, includingstriatal, hypothalamic, and claustrum neurons. We found considerable geneticcorrelations with psychiatric traits and sleepduration, and modest correlations with other sleep-relatedtraits. Mendelian randomization identified the causal effects of insomnia ondepression, diabetes, and cardiovascular disease, and the protective effects ofeducational attainment and intracranial volume. Our findings highlight keybrain areas and cell types implicated in insomnia, and provide new treatmenttargets.

参考文献:

1.Lane et al (2019). Biological and clinical insightsfrom genetics of insomnia symptoms. Nat Genet. 2019 Mar;51(3):387-393.

2.Jansen et al (2019). Genome-wide analysis of insomnia in1,331,010 individuals identifies new risk loci and functional pathways. NatGenet. 2019 Mar;51(3):394-403.

 

2. Science—科学家证实人类睡眠中存在电生理、血流动力学和脑脊液流动的协同振荡

英文摘要:

Sleep is essential for both cognition and maintenance ofhealthy brain function. Slow waves in neural activity contribute to memoryconsolidation, whereas cerebrospinal fluid (CSF) clears metabolic wasteproducts from the brain. Whether these two processes are related is not known.We used accelerated neuroimaging to measure physiological and neural dynamicsin the human brain. We discovered a coherent pattern of oscillatingelectrophysiological, hemodynamic, and CSF dynamics that appears duringnon-rapid eye movement sleep. Neural slow wavesare followed by hemodynamic oscillations, which in turn are coupled to CSFflow. These results demonstrate that the sleeping brain exhibits waves of CSFflow on a macroscopic scale, and these CSF dynamics are interlinked with neuraland hemodynamic rhythms.

参考文献:

Fultz et al (2019). Coupled electrophysiological,hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science. 2019Nov 1;366(6465):628-631.

 

3. Science—Delta波的功能被阐明:Delta波通过隔离皮层计算以促进记忆巩固

英文摘要:

Deltawaves have been described as periods of generalized silence across the cortex,and their alternation with periods of endogenous activity results in the slowoscillation of slow-wave sleep. Despite evidencethat delta waves are instrumental for memory consolidation, their specific rolein reshaping cortical functional circuits remains puzzling. In a rat model, wefound that delta waves are not periods of complete silence and that theresidual activity is not mere neuronal noise. Instead, cortical cells involvedin learning a spatial memory task subsequently formed cell assemblies duringdelta waves in response to transient reactivation of hippocampal ensemblesduring ripples. This process occurred selectively during endogenous or inducedmemory consolidation. Thus, delta waves represent isolated corticalcomputations tightly related to ongoing information processing underlyingmemory consolidation.

参考文献:

Todorovaet al (2019). Isolated cortical computations during delta waves support memoryconsolidation. Science. 2019 Oct 18;366(6463):377-381.

 

4. Science—REM睡眠激活的MCH神经元参与海马依赖的记忆的遗忘

英文摘要:

Theneural mechanisms underlying memory regulation during sleepare not yet fully understood. We found that melanin concentratinghormone-producing neurons (MCH neurons) in the hypothalamus actively contributeto forgetting in rapid eye movement (REM) sleep.Hypothalamic MCH neurons densely innervated the dorsal hippocampus. Activationor inhibition of MCH neurons impaired or improved hippocampus-dependent memory,respectively. Activation of MCH nerve terminals in vitro reduced firing ofhippocampal pyramidal neurons by increasing inhibitory inputs. Wake- and REM sleep-active MCH neurons were distinct populations thatwere randomly distributed in the hypothalamus. REM sleepstate-dependent inhibition of MCH neurons impaired hippocampus-dependent memorywithout affecting sleep architecture or quality.REM sleep-active MCH neurons in the hypothalamusare thus involved in active forgetting in the hippocampus.

参考文献:

Izawa et al (2019). REM sleep-active MCH neurons areinvolved in forgetting hippocampus-dependent memories. Science. 2019 Sep20;365(6459):1308-1313.

 

5. Cell—中脑动眼神经核周区是重要的NREM睡眠调控中枢

英文摘要:

Theperioculomotor (pIII) region of the midbrain was postulated as a sleep-regulating center in the 1890s but largelyneglected in subsequent studies. Using activity-dependent labeling and geneexpression profiling, we identified pIII neurons that promote non-rapid eyemovement (NREM) sleep. Optrode recording showedthat pIII glutamatergic neurons expressing calcitonin gene-related peptidealpha (CALCA) are NREM-sleep active; optogeneticand chemogenetic activation/inactivation showed that they strongly promote NREMsleep. Within the pIII region, CALCA neuronsform reciprocal connections with another population of glutamatergic neuronsthat express the peptide cholecystokinin (CCK). Activation of CCK neurons alsopromoted NREM sleep. Both CALCA and CCK neuronsproject rostrally to the preoptic hypothalamus, whereas CALCA neurons alsoproject caudally to the posterior ventromedial medulla. Activation of eachprojection increased NREM sleep. Together, thesefindings point to the pIII region as an excitatory sleepcenter where different subsets of glutamatergic neurons promote NREM sleep through both local reciprocal connections andlong-range projections.

参考文献:

Zhang et al (2019). An Excitatory Circuit in thePerioculomotor Midbrain for Non-REM Sleep Control. Cell. 2019 May16;177(5):1293-1307.e16.

 

6.。 Nature—睡眠通过调控造血系统进而预防动脉粥样硬化

英文摘要:

Sleep is integral to life1. Althoughinsufficient or disrupted sleep increases the riskof multiple pathological conditions, including cardiovascular disease2,we know little about the cellular and molecular mechanisms by which sleep maintains cardiovascular health. Here we reportthat sleep regulates haematopoiesis and protectsagainst atherosclerosis in mice. We show that mice subjected to sleep fragmentation produce more Ly-6Chighmonocytes, develop larger atherosclerotic lesions and produce less hypocretin-astimulatory and wake-promoting neuropeptide-in the lateral hypothalamus.Hypocretin controls myelopoiesis by restricting the production of CSF1 byhypocretin-receptor-expressing pre-neutrophils in the bone marrow. Whereashypocretin-null and haematopoietic hypocretin-receptor-null mice developmonocytosis and accelerated atherosclerosis, sleep-fragmentedmice with either haematopoietic CSF1 deficiency or hypocretin supplementationhave reduced numbers of circulating monocytes and smaller atheroscleroticlesions. Together, these results identify a neuro-immune axis that links sleep to haematopoiesis and atherosclerosis.

参考文献:

McAlpine et al (2019). Sleep modulates haematopoiesis andprotects against atherosclerosis. Nature. 2019 Feb;566(7744):383-387.

 

7. Science—研究发现果蝇中促进睡眠的基因也具有抗微生物的作用

英文摘要:

Sleep remains a major mystery of biology. In particular,little is known about the mechanisms that account for the drive to sleep. In an unbiased screen of more than 12,000 Drosophilalines, we identified a single gene, nemuri, that induces sleep. The NEMURI protein is an antimicrobial peptidethat can be secreted ectopically to drive prolonged sleep(with resistance to arousal) and to promote survival after infection. Loss of nemuriincreased arousability during daily sleep andattenuated the acute increase in sleep induced by sleep deprivation or bacterial infection. Conditionsthat increase sleep drive induced expression of nemuriin a small number of fly brain neurons and targeted it to the sleep-promoting, dorsal fan-shaped body. We propose thatNEMURI is a bona fide sleep homeostasis factorthat is particularly important under conditions of high sleepneed; because these conditions include sickness, our findings provide a linkbetween sleep and immune function.

参考文献:

Toda et al (2019). A sleep-inducing gene, nemuri, linkssleep and immune function in Drosophila. Science. 2019 Feb 1;363(6426):509-515.

 

8. Science—睡眠觉醒周期调控细胞间液中tau蛋白水平,睡眠剥夺增加细胞间液中tau蛋白水平

英文摘要:

The sleep-wake cycle regulates interstitial fluid (ISF) andcerebrospinal fluid (CSF) levels of β-amyloid (Aβ) that accumulates in Alzheimer'sdisease (AD). Furthermore, chronic sleepdeprivation (SD) increases Aβ plaques. However, tau, not Aβ, accumulationappears to drive AD neurodegeneration. We tested whether ISF/CSF tau and tauseeding and spreading were influenced by the sleep-wakecycle and SD. Mouse ISF tau was increased ~90% during normal wakefulness versussleep and ~100% during SD. Human CSF tau alsoincreased more than 50% during SD. In a tau seeding-and-spreading model,chronic SD increased tau pathology spreading. Chemogenetically drivenwakefulness in mice also significantly increased both ISF Aβ and tau. Thus, thesleep-wake cycle regulates ISF tau, and SDincreases ISF and CSF tau as well as tau pathology spreading.

参考文献:

Holth et al (2019). The sleep-wake cycle regulates braininterstitial fluid tau in mice and CSF tau in humans. Science. 2019 Feb22;363(6429):880-884.

 

9. Science—睡眠觉醒周期驱动突触磷酸化动力学

英文摘要:

Thecircadian clock drives daily changes of physiology, including sleep-wake cycles, through regulation of transcription,protein abundance, and function. Circadian phosphorylation controls cellularprocesses in peripheral organs, but little is known about its role in brainfunction and synaptic activity. We applied advanced quantitativephosphoproteomics to mouse forebrain synaptoneurosomes isolated across 24hours, accurately quantifying almost 8000 phosphopeptides. Half of the synapticphosphoproteins, including numerous kinases, had large-amplitude rhythms peakingat rest-activity and activity-rest transitions. Bioinformatic analyses revealedglobal temporal control of synaptic function through phosphorylation, includingsynaptic transmission, cytoskeleton reorganization, and excitatory/inhibitorybalance. Sleep deprivation abolished 98% of allphosphorylation cycles in synaptoneurosomes, indicating that sleep-wake cycles rather than circadian signals are maindrivers of synaptic phosphorylation, responding to both sleepand wake pressures.

参考文献:

Brüning et al (2019). Sleep-wake cycles drive dailydynamics of synaptic phosphorylation. Science. 2019 Oct 11;366(6462).

 

10. Cell—慢波振荡和Delta波在睡眠依赖的记忆巩固中具有相反的作用

英文摘要:

Sleep has been implicated in both memory consolidationand forgetting of experiences. However, it is unclear what governs the balancebetween consolidation and forgetting. Here, we tested how activity-dependentprocessing during sleep might differentiallyregulate these two processes. We specifically examined how neural reactivationsduring non-rapid eye movement (NREM) sleep werecausally linked to consolidation versus weakening of the neural correlatesof neuroprosthetic skill. Strikingly, we found that slow oscillations (SOs) anddelta (δ) waves have dissociable and competing roles in consolidation versusforgetting. By modulating cortical spiking linked to SOs or δ waves using closed-loopoptogenetic methods, we could, respectively, weaken or strengthen consolidationand thereby bidirectionally modulate sleep-dependentperformance gains. We further found that changes in the temporal coupling ofspindles to SOs relative to δ waves could account for such effects. Thus, ourresults indicate that neural activity driven by SOs and δ waves have competingroles in sleep-dependent memory consolidation.

参考文献:

Kim et al (2019). Competing Roles of Slow Oscillationsand Delta Waves in Memory Consolidation versus Forgetting. Cell. 2019 Oct3;179(2):514-526.e13.

 

2019年十大研究进展名录

1. 年终盘点:2019年帕金森病十大基础研究进展

2. 年终盘点:2019年帕金森病十大临床研究进展

3. 年终盘点:2019年阿尔茨海默病十大基础研究进展

4. 年终盘点:2019年阿尔茨海默病十大临床研究进展

5. 年终盘点:2019年神经科学领域十大基础研究进展

6. 年终盘点:2019年抑郁症领域十大基础研究进展(一半来自中国)

7. 年终盘点:2019年脑血管病领域十大基础研究进展

8. 年终盘点:2019年神经炎症领域十大基础研究进展

9. 年终盘点:2019年神经活动记录十大基础研究进展

10. 年终盘点:2019年ALS/FTD十大基础研究进展

11. 年终盘点:2019年医学和生物学领域深度学习和神经网络十大基础研究进展

12. 年终盘点:2019年神经内科十大临床研究突破

13. 年终盘点:2019年疼痛防治和痛觉机制十大研究突破


2018年十大研究进展名录

1.盘点2018年阿尔茨海默病十大研究突破

2.盘点2018年帕金森病十大研究突破

3. 盘点2018年神经科学二十大研究突破

4. 盘点2018年渐冻症(ALS)十大研究进展

5. 盘点2018年全球脑卒中十大研究进展

6. 盘点2018年神经影像十大研究进展

7. 盘点2018年神经炎症领域的十大研究突破

8. 盘点2018年神经变性痴呆十大研究突破

9. 2018年神经科学“学习和记忆”领域十大研究进展

10. 2018年抑郁症领域的十大研究突破

11. 2018年痛觉和疼痛领域的十大研究突破

12. 2018年的神经干细胞研究十大研究进展

13. 2018年的神经干细胞研究十大研究进展

14. 2018年的十大睡眠研究突破

15. 2018年“衰老和长生不老”领域的十大研究突破

16. 2018年自闭症领域的十大研究突破


欢迎加入60个“神经科学临床和基础社群”

1、神经科学临床和基础主群(500人)已满;

2、神经科学临床和基础Alzheimer亚群;

3、神经科学临床和基础Parkinson亚群;

4、神经科学临床和基础cerebrovascular亚群;

5、神经科学临床和基础Depression亚群;

6、神经科学临床和基础Movement disorders亚群;

7、神经科学临床和基础Neuroimmunology亚群;

8、神经科学临床和基础Psychiatry亚群;

9、神经科学临床和基础Neuroimaging亚群;

10、神经科学临床和基础Neurogenetics亚群;

11、神经科学临床和基础Neurodegeneration亚群;

12、神经科学临床和基础Epilepsy亚群;

13、神经科学临床和基础Sleep亚群;

14、神经科学临床和基础Neural Development亚群;

15、神经科学临床和基础Electrophysiology亚群;

16、神经科学临床和基础Neural circuits亚群;

17、神经科学临床和基础神经调控和脑机接口亚群;

18、神经科学临床和基础人工智能亚群;

19、神经科学临床和基础重大疾病和疑难病亚群;

20、神经科学临床和基础衰老和永生亚群;

21、神经科学临床和基础周围神经病群;

22、神经科学临床和基础神经肌肉疾病群;

23、神经科学临床和基础视觉系统研究群;

24、神经科学临床和基础疼痛研究群;

25、神经科学临床和基础Emotion研究群;

26、神经科学临床和基础意识研究群;

27、神经科学临床和基础Learning & Memory亚群;

28、神经科学国自然基金申请交流群;

29、神经科学ALS/FTD交流群;

30、神经科学脑外伤和脊髓外伤研究群;

31、神经科学儿科神经病学交流群;

32、神经科学Autism & ADHD研究群;

33、神经科学大数据和组学研究群;

34、神经科学非编码RNA研究群;

35、神经科学schizophrenia研究群;

36、神经科学Non-human primate研究群;

37、神经科学神经损伤与修复研究群;

38、神经科学Epigenetics研究群;

39、神经科学神经介入和静脉溶栓亚群;

40、神经科学计算神经科学亚群;

41、神经科学基因治疗交流群;

42、神经科学细胞治疗交流群;

43、神经科学纳米药物治疗交流群;

44、神经科学中医药治疗交流群;

45、神经科学免疫调节治疗交流群;

46、神经科学类器官和类脑研究交流群;

47、神经科学语言研究交流群;

48、神经科学深度学习和神经网络交流群;

49、神经科学类神经元和类脑器件设计交流群;

50、神经科学半人半机器人交流群;

51、神经科学感染性疾病研究群;

52、神经科学神经系统肿瘤研究群;

53、神经科学星型和小胶质细胞研究群;

54、神经科学神经外科研究群;

55、神经科学系统论和复杂性研究交流群;

56、神经科学脑肠轴和Microbiota交流群;

57、神经科学虚拟现实、增强现实和混合现实交流群;

58、神经科学临床试验和流行病学研究交流群;

59、神经科学单细胞测序研究交流群;

60、神经科学蛋白质解析交流群。

如果想入群,请加我微信(qingyierjing),并回复要加入的群,我会将您拉入群中。


20个神经科学领域的突破可能获得诺贝尔奖

1. 意识研究:意识的本质、组成、运行机制及其物质载体;不同意识层次的操控和干预,意识障碍性疾病的治疗。

2. 学习和记忆的机制及其调控:记忆的形成和消退机制,记忆的人为移植和记忆的人为消除等;

3. 痴呆研究:阿尔茨海默病的机制和治疗研究,血管性痴呆、额颞叶痴呆、路易体痴呆的机制研究和治疗。

4. 睡眠和睡眠障碍的机制和干预研究。

5. 情绪研究:喜、怒、哀、恐等基本情绪的机制和相关疾病的治疗。

6. 计算和逻辑推理的神经科学基础研究。

7. 语言的神经科学基础研究。

8. 视觉图像形成和运用的神经科学基础研究。

9. 创造力、想象力和艺术文学创造的神经基础研究。

10. 痛觉的神经科学基础及其干预研究

11. 性行为研究:性行为的神经科学基础研究和性行为的调控和干预。

12. 脑和脊髓损伤的机制及其干预研究,包括脑卒中、脊髓损伤机制研究,神经干细胞移植研究,新型神经修复技术,神经康复技术。

13. 精神类疾病的机制和干预研究:自闭症、精分、抑郁症、智能障碍、药物成瘾等;

14. 运动神经元病等神经变性病机制研究及其干预。

15. 衰老的机制和永生研究,包括大脑衰老的机制和寿命延长研究。

16. 神经系统遗传病的机制研究及基因治疗。

17. 神经操纵和调控技术:光遗传技术、药物遗传技术、基因编辑技术、经颅磁刺激、深部脑刺激和电刺激等。

18. 脑组织兼容性电子微芯片及脑机互动装置研究,包括脑机接口、神经刺激芯片、记忆存储芯片,意识存储芯片,人脑非语言互动装置等。

19. 半人半机器人的设计、完善和修复技术:包括任何机械肢体的人类移植,大脑移植入机器体内等。

20. 新型大脑成像和神经元活动记录技术:高分辨率成像技术、大型电极微阵列技术等。






https://blog.sciencenet.cn/blog-661795-1213900.html

上一篇:年终盘点:2019年衰老和长寿十大研究突破
下一篇:年终盘点:2019年神经发育及成年神经再生十大研究突破​​
收藏 IP: 170.140.104.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-4-25 08:50

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部