|||
用数据说话系列(4): 独立样本、配对样本及单样本 t 检验 样本数 至少每组多少为宜
Basic knowledge worth spreading!
姑且先不说 t检验前提要求数据服从正态分布,以下两点需要注意:
# 注意点一:一般来讲,希望有80% 以上的统计功效(Statistical Power Level)假设检验才有效。
# 注意点二:另外,效应量(Effect Size,或R语言中为delta),反映处理效应大小的度量。即,两样本平均数的差异,一般delta=1。
# n :number of observations (per group).
结果显示:一般情况(即达到80%以上统计功效的前提下),
两独立样本双尾 t检验至少需要每组 17 个样本,
两独立样本单尾 t 检验最少需要每组 13 个样本。
补充:
power.t.test(power = 0.8,delta = 1,type = "paired")
# n=9.937864
#双尾 配对样本 t检验 至少每组 10 个样本
power.t.test(power = 0.8,delta =1,type = "paired",alternative = "one.side")
# n = 7.727622
#单尾配对样本t检验至少每组8个样本
power.t.test(power = 0.8,delta =1,type = "one.sample")
# n = 9.937864
#双尾 单样本 t检验 至少每组 10 个样本
power.t.test(power = 0.8,delta =1,type = "one.sample",alternative = "one.side")
# n = 7.727622
#单尾单样本t检验至少每组8个样本
When delta=1,power against n for independent two-sample t-test("n" indicates sample number per group)
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Power | Na
| 0.09131
| 0.1572
| 0.2224
| 0.2859
| 0.3471
| 0.4056
| 0.4611
| 0.5133
| 0.5619
|
n | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
Power | 0.6070
| 0.6486
| 0.6867
| 0.7214
| 0.7529
| 0.7813
| 0.8070
| 0.830
| 0.850
| 0.8689
|
n | 21 | 22 | 23 | ... | 50 | 100 | 1000 | 10000 | … |
|
Power | 0.8852
| 0.8997
| 0.9124
|
| 0.9986
| 0.9999
| 1 | 1 |
|
|
Note: two-side t-test.
# 计算过程(在R软件中运行)如下:
#----------------------------------------------------------
> power.t.test(n = 4, delta = 1)
Two-sample t test power calculation
n = 4
delta = 1
sd = 1
sig.level = 0.05
power = 0.2224633 # 样本数为4的话,统计功效very bad
alternative = two.sided
NOTE: n is number in *each* group
> power.t.test(n = 20, delta = 1)
Two-sample t test power calculation
n = 20
delta = 1
sd = 1
sig.level = 0.05
power = 0.8689528 # 样本数为20 的话,统计功效 good
alternative = two.sided
NOTE: n is number in *each* group
> power.t.test(power = 0.80, delta = 1)
Two-sample t test power calculation
n = 16.71477 # very important # 两样本双尾t test,至少每组17个样本
delta = 1
sd = 1
sig.level = 0.05
power = 0.8
alternative = two.sided
NOTE: n is number in *each* group
> power.t.test(power = 0.80, delta = 1, alternative = "one.sided")
Two-sample t test power calculation
n = 13.09777 # very important # 两样本单尾t test,至少每组13个样本
delta = 1
sd = 1
sig.level = 0.05
power = 0.8
alternative = one.sided
NOTE: n is number in *each* group
# --------------------------------------------------
# 特定情况,比如:效用值(Effect Size或曰 delta)为2的时候
> power.t.test(power = 0.80, delta = 2)
Two-sample t test power calculation
n = 5.090008 # 特定条件,效用值=2 的情况,双尾只需要至少每组 5个样本
delta = 2
sd = 1
sig.level = 0.05
power = 0.8
alternative = two.sided
NOTE: n is number in *each* group
> power.t.test(power = 0.80, delta = 2, alternative = "one.sided")
Two-sample t test power calculation
n = 3.987012 # 特定条件,效用值=2 的情况,单尾只需要至少 每组 4 个样本
delta = 2
sd = 1
sig.level = 0.05
power = 0.8
alternative = one.sided
NOTE: n is number in *each* group
参考博文:
1. 李淼新:您的t检验显著结果只是因为你的运气吗?
2. Power calculations for one and two sample t tests
4.统计功效和效应值
纰漏和错误之处在所难免,恳请您批评指正!
系列文章>>
用数据说话系列(1): 样本数,数据顺序对 t test 的影响
用数据说话系列(2): 样本数,数据顺序对"聚类分析"的影响
用数据说话系列(3): 样本数,数据顺序对"方差分析ANOVA"的影响
用数据说话系列(4): 各种 t 检验 样本数 至少每组多少为宜
用数据说话系列(5): 非参数检验SteelDwass test和 Dunn test选谁
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-21 17:10
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社