flyada的个人博客分享 http://blog.sciencenet.cn/u/flyada

博文

[转载]个性化推荐的十大挑战之六:用户行为模式的挖掘和利用

已有 4353 次阅读 2012-4-5 15:47 |个人分类:随手摘录|系统分类:科研笔记|关键词:挖掘,用户| 用户, 挖掘 |文章来源:转载

挑战六:用户行为模式的挖掘和利用

 

深入挖掘用户的行为模式有望提高推荐的效果或在更复杂的场景下进行推荐。譬如说,新用户和老用户具有很不一样的选择模式:一般而言,新用户倾向于选择热门的商品,而老用户对于小众商品关注更多[15],新用户所选择的商品相似度更高,老用户所选择的商品多样性较高[30]。有些混合算法可以通过一个单参数调节推荐结果的多样性和热门程度[23],在这种情况下就可以考虑为给不同用户赋予不同参数(从算法结果的个性化到算法本身的个性化),甚至允许用户自己移动一个滑钮调节这个参数——当用户想看热门的时候,算法提供热门推荐;当用户想找点很酷的产品时,算法也可以提供冷门推荐。用户行为的时空统计特性也可以用于提高推荐或者设计针对特定场景的应用。用户的选择可能同时蕴含了长期的兴趣和短期的兴趣,通过将这两种效应分离出来,可以明显提高推荐的精确度[31-33]。事实上,简单假设用户兴趣随时间按照指数递减,也能够得到改进的推荐效果[34,35]。利用手机上网现在已经越来越普及,与此同时,嵌入GPS的手机越来越多,因此,基于位置的服务成为一个受到学术界和业界广泛关注的问题。基于位置信息的推荐可能会成为个性化推荐的一个研究热点和重要的应用场景,而这个问题的解决需要能够对用户的移动模式有深入理解[36,37](包括预测用户的移动轨迹和判断用户在当前位置是否有可能进行餐饮购物活动等),同时还要有定量的办法去定义用户之间以及地点之间的相似性[38,39]。另外,不同用户打分的模式也很不一样[40,41],用户针对不同商品的行为模式也不一样[42,43](想象你在网上下载一首歌和团购房子时的区别),这些都可以用来提高推荐的效果。

[15] C.-J. Zhang, A. Zeng, Behavior patterns of online users and the effect on information filtering, Physica A 391 (2012) 1822-1830.

[23] T. Zhou, Z. Kuscsik, J.-G. Liu, M. Medo, J.R. Wakeling, Y.-C. Zhang, Solving the apparent diversityaccuracy dilemma of recommender systems, Proceedings of the National Academy of Sciences of the United States of America 107 (2010) 4511-4515.

[30] M.-S. Shang, L. Lü, Y.-C. Zhang, T. Zhou, Empirical analysis of web-based user-object bipartite networks, EPL 90 (2010) 48006.

[31] S.-H. Min, I. Han, Detection of the customer time-variant pattern for improving recommender systems, Expert Systems with Applications 28 (2005) 189-199.

[32] L. Xiang, Q. Yuan, S. Zhao, L. Chen, X. Zhang, Q. Yang, J. Sun, Temporal recommendation on graphs via long-and short-term preference fusion, in: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM Press, New York, 2010, pp. 723-732.

[33] N. N. Liu, M. Zhao, E. Xiang, Q. Yang, Online evolutionary collaborative filtering, in: Proceedings of the 4th ACM Conference on Recommender Systems, ACM Press, New York, 2010, pp. 95-102.

[34] J. Liu, G. Deng, Link prediction in a user-object network based on time-weighted resource allocation, Physica A 39 (2009) 3643-3650. 

[35] Y. Koren, Collaborative filtering with temporal dynamics, in: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM Press, New York, 2009, pp. 447-456.

[36] C. Song, Z. Qu, N. Blumm, A.-L. Barabási, Limits of predictability in human mobility, Science 327 (2010) 1018-1021.

[37] E. Cho, S.A. Myers, J. Leskovec, Friendship and mobility: user movement in location-based social networks, in: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM Press, New York, 2011, pp. 1082-1090.

[38] V. W. Zheng, Y. Zheng, X. Xie, Q. Yang, Collaborative location and activity recommendations with GPS history data, in: Proceedings of the 19th International Conference on World Wide Web, ACM Press, New York, 2010, pp. 1029-1038.

[39] M. Clements, P. Serdyukov, A. P. De Vries, M. J. T. Reinders, Personalised travel recommendation based on location co-occurrence, arXiv:1106.5213.

[40] Y. Koren, J. Sill, OrdRec: An ordinal model for predicting personalized item rating distributions, Proc. 5th ACM Conference on Recommender Systems, ACM Press, New York, 2011, pp. 117-124.

[41] Z. Yang, Z.-K. Zhang, T. Zhou, Uncovering Voting Patterns in Recommender Systems (unpublished).

[42] J. Vig, S. Sen, J. Riedl, Navigation the tag genome, in: Proceedings of the 16th International Conference on Intelligent User Interfaces, ACM Press, New York, 2011, pp. 93-102.

[43] L. Chen, P. Pu, Critiquing-based recommenders: survey and emerging trends, User Modeling and User-Adapted Interaction 22 (2012) 125-150.



http://blog.sciencenet.cn/blog-636598-555664.html

上一篇:[转载]个性化推荐的十大挑战之五:推荐系统的脆弱性问题
下一篇:[转载]个性化推荐的十大挑战之七:推荐系统效果评估

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备14006957 )

GMT+8, 2019-10-17 16:06

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部