xiaoqiugood的个人博客分享 http://blog.sciencenet.cn/u/xiaoqiugood

博文

赝势选择再谈

已有 21170 次阅读 2015-2-25 21:31 |个人分类:电子结构计算|系统分类:科研笔记

关注:

1) 关注赝势文件中各参数的含义

2) 赝势的产生方式




参考链接:

http://www.vasp.at/index.php/resources

 

http://kitchingroup.cheme.cmu.edu/dft-book/dft.html

http://cms.mpi.univie.ac.at/vasp/vasp/Pseudopotentials_supplied_with_VASP_package.html

https://www.vasp.at/index.php/news/36-highlights/100-new-release-paw-datasets



http://www.physics.rutgers.edu/gbrv/



GBRV

by Kevin F. Garrity,          Joseph W. Bennett, Karin M. Rabe, and David Vanderbilt

Updated February 3,          2014

Version 1.2 Now available.  See below and notes (pdf).

   Welcome to the        GBRV pseudopotential site.

 This site hosts the GBRV pseudopotential        library, a highly accurate and computationally inexpensive        open-source pseudopotential library which has been designed and        optimized for use in high-throughput DFT calculations and        released under the gnu public license.        

 We provide potential files for direct use with the Quantum Espresso,         Abinit, and JDFTx plane-wave        pseudopotential codes, as well as input files for the Vanderbilt         Ultrasoft        pseudopotential generator.  Please see our paper: K.F. Garrity, J.W. Bennett, K.M. Rabe and D. Vanderbilt,         Comput. Mater. Sci.81, 446 (2014) (link),         for more information.

       The GBRV pseudopotential library has been tested by comparing to        all-electron LAPW+LO calculations performed with the WIEN2k code in a variety of        chemical environments.  The GBRV potential library has been        found to produce lattice constants, bulk moduli, and magnetic        moments which are of higher overall accuracy than other        comprehensive pseudopotential libraries across a wide variety of        bonding environments.

       Please consult our paper        (local preprint) for full details on our        design criteria and testing procedure, and extra notes on the Abinit        potentials and testing data.

       While these potentials have been designed for high-throughput        calculations, they should be of general use.  Despite our        relatively thorough testing, we cannot guarantee that these          potentials will be appropriate for every application, but        we provide testing data as well as the input files for use with        the Vanderbilt Ultrasoft pseudopotential generator code, which        can be used to modify the potentials to suit your needs.         Please let us know if you improve on any of the potentials.

Kevin F.          Garrity
       Postdoctoral Associate
       Department of Physics
       Rutgers University
       kgarrity@physics.rutgers.edu

 

 

 




Gaussian赝势

http://blog.sina.com.cn/s/blog_553461e90101ba79.html

 




赝势


http://blog.sciencenet.cn/blog-567091-796833.html

http://kitchingroup.cheme.cmu.edu/dft-book/dft.html#sec-9-4-6


9.4.6 Recommended values for ENCUT and valence electrons for different POTCAR files

The ENCUT tag and PREC tag affect the accuracy/convergence of your calculations.



from jasp.POTCAR import *from ase.data import chemical_symbolsimport glob, osprint'#+tblname: POTCAR'print'#+caption: Parameters for POTPAW_PBE POTCAR files.'print'#+ATTR_LaTeX: longtable'print'| POTCAR | ENMIN | ENMAX | prec=high (eV) | # val. elect. |'print'|-'chemical_symbols.sort()for symbol in chemical_symbols:potcars = glob.glob('{0}/POTPAW_PBE/{1}*/POTCAR'.format(os.environ['VASP_PP_PATH'],                                                     symbol))for potcar in potcars:POTCAR = os.path.relpath(potcar,                                 os.environ['VASP_PP_PATH']+'/POTPAW_PBE')[:-7]ENMIN = get_ENMIN(potcar)ENMAX = get_ENMAX(potcar)HIGH  = 1.3*ENMAXZVAL  = get_ZVAL(potcar)print'|{POTCAR:30s}|{ENMIN}|{ENMAX}|{HIGH:1.3f}|{ZVAL}|'.format(**locals())




Table 8: Parameters for POTPAW_PBE POTCAR files.
POTCARENMINENMAXprec=high (eV)# val. elect.
Ac129.178172.237223.90811.0
Ag_new187.383249.844324.79711.0
Ag187.385249.846324.80011.0
Ag_pv223.399297.865387.22517.0
Al180.225240.3312.3903.0
Am191.906255.875332.63717.0
Ar199.795266.393346.3118.0
As_d_GW259.629346.172450.02415.0
As_d216.488288.651375.24615.0
As_GW156.526208.702271.3135.0
As156.51208.68271.2845.0
At_d199.688266.251346.12617.0
At121.073161.43209.8597.0
Au_new172.457229.943298.92611.0
Au172.461229.948298.93211.0
Ba_sv140.408187.21243.37310.0
Be185.658247.544321.8072.0
Be_sv231.563308.75401.3754.0
B_h500.0700.0910.0003.0
Bi_d182.138242.851315.70615.0
Bi78.777105.037136.5485.0
Bi_pv231.89309.187401.94321.0
B238.954318.606414.1883.0
Br162.198216.264281.1437.0
B_s201.934269.245350.0193.0
Ba_sv140.408187.21243.37310.0
Be185.658247.544321.8072.0
Be_sv231.563308.75401.3754.0
Bi_d182.138242.851315.70615.0
Bi78.777105.037136.5485.0
Bi_pv231.89309.187401.94321.0
Br162.198216.264281.1437.0
Ca77.067102.755133.5822.0
Ca_pv89.665119.554155.4208.0
Ca_sv199.939266.586346.56210.0
C_d310.494413.992538.1904.0
Cd205.757274.342356.64512.0
Ce_3135.964181.286235.67211.0
Ce_h224.925299.9389.87012.0
Ce204.781273.042354.95512.0
C_GW310.494413.992538.1904.0
C_h_nr556.263741.684964.1894.0
C_h500.0700.0910.0004.0
Cl_h306.852409.136531.8777.0
Cl196.854280.0364.0007.0
Co_new200.976267.968348.3589.0
Co200.977267.969348.3609.0
Co_sv292.771390.362507.47117.0
C300.0400.0520.0004.0
Cr170.311227.082295.2076.0
Cr_pv_new199.261265.681345.38512.0
Cr_pv199.262265.683345.38812.0
Cr_sv_new296.603395.471514.11214.0
Cr_sv296.603395.471514.11214.0
C_s205.426273.901356.0714.0
Cs_sv165.238220.318286.4139.0
Cu_f221.585295.446384.08011.0
Cu_new221.585295.446384.08011.0
Cu204.91273.214355.17811.0
Cu_pvf276.486368.648479.24217.0
Cu_pv276.454368.605479.18717.0
Ca77.067102.755133.5822.0
Ca_pv89.665119.554155.4208.0
Ca_sv199.939266.586346.56210.0
Cd205.757274.342356.64512.0
Ce_3135.964181.286235.67211.0
Ce_h224.925299.9389.87012.0
Ce204.781273.042354.95512.0
Cl_h306.852409.136531.8777.0
Cl196.854280.0364.0007.0
Co_new200.976267.968348.3589.0
Co200.977267.969348.3609.0
Co_sv292.771390.362507.47117.0
Cr170.311227.082295.2076.0
Cr_pv_new199.261265.681345.38512.0
Cr_pv199.262265.683345.38812.0
Cr_sv_new296.603395.471514.11214.0
Cr_sv296.603395.471514.11214.0
Cs_sv165.238220.318286.4139.0
Cu_f221.585295.446384.08011.0
Cu_new221.585295.446384.08011.0
Cu204.91273.214355.17811.0
Cu_pvf276.486368.648479.24217.0
Cu_pv276.454368.605479.18717.0
Dy_3116.797155.729202.4489.0
Dy191.601255.467332.10720.0
Er_289.813119.75155.6758.0
Er_3116.29155.053201.5699.0
Er223.587298.116387.55122.0
Eu_274.47899.304129.0958.0
Eu_396.793129.057167.7749.0
Eu_GW452.441603.254784.23017.0
Eu187.251249.668324.56817.0
F_d_GW365.773487.698634.0077.0
Fe200.912267.883348.2488.0
Fe_pv_new219.928293.238381.20914.0
Fe_pv219.929293.238381.20914.0
Fe_sv_h410.523547.365711.57516.0
Fe_sv292.918390.558507.72516.0
F_h500.0700.0910.0007.0
F300.0400.0520.0007.0
Fr_sv160.905214.54278.9029.0
F_s217.369289.825376.7727.0
Fe200.912267.883348.2488.0
Fe_pv_new219.928293.238381.20914.0
Fe_pv219.929293.238381.20914.0
Fe_sv_h410.523547.365711.57516.0
Fe_sv292.918390.558507.72516.0
Fr_sv160.905214.54278.9029.0
Ga_d_GW277.386369.848480.80213.0
Ga_d212.022282.697367.50613.0
Ga_h303.451404.601525.98113.0
Ga101.009134.678175.0813.0
Ga_s62.87783.836108.9873.0
Ga_sv_GW377.564503.418654.44321.0
Gd_3115.761154.348200.6529.0
Gd192.354256.472333.41418.0
Ge_d3169.58226.106293.93814.0
Ge_d_GW2254.348339.13440.86914.0
Ge_d_GW232.72310.294403.38214.0
Ge_d_GW_ref429.008572.01743.61314.0
Ge_d232.72310.294403.38214.0
Ge_h307.818410.425533.55314.0
Ge130.355173.807225.9494.0
H1.25200.0250.0325.0001.25
H1.5200.0250.0325.0001.5
H.5200.0250.0325.0000.5
H.75200.0250.0325.0000.75
He359.172478.896622.5652.0
Hf165.25220.333286.4334.0
Hf_pv165.256220.342286.44510.0
Hf_sv_GW238.045317.394412.61212.0
Hf_sv178.083237.444308.67712.0
Hg174.911233.214303.17812.0
H_h500.0700.0910.0001.0
Ho_3115.615154.153200.3999.0
Ho192.876257.168334.31821.0
H200.0250.0325.0001.0
He359.172478.896622.5652.0
Hf165.25220.333286.4334.0
Hf_pv165.256220.342286.44510.0
Hf_sv_GW238.045317.394412.61212.0
Hf_sv178.083237.444308.67712.0
Hg174.911233.214303.17812.0
Ho_3115.615154.153200.3999.0
Ho192.876257.168334.31821.0
In_d179.413239.218310.98313.0
In71.95195.934124.7143.0
I131.735175.647228.3417.0
Ir158.153210.87274.1319.0
In_d179.413239.218310.98313.0
In71.95195.934124.7143.0
Ir158.153210.87274.1319.0
K_pv87.548116.731151.7507.0
Kr138.945185.26240.8388.0
K_sv194.412259.216336.9819.0
Kr138.945185.26240.8388.0
La164.485219.313285.10711.0
La_s102.414136.552177.5189.0
Li100.0140.0182.0001.0
Li_sv2416.33555.106721.6383.0
Li_sv374.276499.034648.7443.0
Lu_3116.257155.009201.5129.0
Lu191.771255.695332.40425.0
Mg_new94.607126.143163.9862.0
Mg157.509210.012273.0162.0
Mg_pv_GW302.947403.929525.1088.0
Mg_pv.old199.18265.574345.2468.0
Mg_pv302.947403.929525.1088.0
Mg_sv371.417495.223643.79010.0
Mn202.399269.865350.8257.0
Mn_pv_new202.398269.864350.82313.0
Mn_pv202.399269.865350.82513.0
Mn_sv290.39387.187503.34315.0
Mo168.438224.584291.9596.0
Mo_pv_new168.438224.584291.95912.0
Mo_pv168.438224.584291.95912.0
Mo_sv182.007242.676315.47914.0
Na76.476101.968132.5581.0
Na_pv194.671259.561337.4297.0
Na_sv484.23700.0910.0009.0
Nb_pv156.456208.608271.19011.0
Nb_sv_new219.927293.235381.20613.0
Nb_sv219.927293.235381.20613.0
Nd_3136.909182.546237.31011.0
Nd189.892253.189329.14614.0
Ne257.704343.606446.6888.0
N_h500.0700.0910.0005.0
Ni_new202.149269.532350.39210.0
Ni202.15269.533350.39310.0
Ni_pv275.959367.945478.32916.0
N300.0400.0520.0005.0
Np190.776254.369330.68015.0
Np_s158.138210.851274.10615.0
N_s_GW222.371296.495385.4445.0
N_s209.76279.68363.5845.0
N_vs209.76279.68363.5845.0
Na76.476101.968132.5581.0
Na_pv194.671259.561337.4297.0
Na_sv484.23700.0910.0009.0
Nb_pv156.456208.608271.19011.0
Nb_sv_new219.927293.235381.20613.0
Nb_sv219.927293.235381.20613.0
Nd_3136.909182.546237.31011.0
Nd189.892253.189329.14614.0
Ne257.704343.606446.6888.0
Ni_new202.149269.532350.39210.0
Ni202.15269.533350.39310.0
Ni_pv275.959367.945478.32916.0
Np190.776254.369330.68015.0
Np_s158.138210.851274.10615.0
O_GW310.976414.635539.0256.0
O_h500.0700.0910.0006.0
O300.0400.0520.0006.0
O_s_GW225.516300.688390.8946.0
O_s212.131282.841367.6936.0
Os171.017228.022296.4298.0
Os_pv171.017228.022296.42914.0
O_sv1066.1191421.4931847.9418.0
Os171.017228.022296.4298.0
Os_pv171.017228.022296.42914.0
Pa189.237252.316328.01113.0
Pa_s145.182193.576251.64911.0
Pb_d178.384237.846309.20014.0
Pb_d_rel2178.357237.809309.15214.0
Pb_d_rel178.357237.809309.15214.0
Pb73.4897.973127.3654.0
Pd_new188.194250.925326.20310.0
Pd188.194250.925326.20310.0
Pd_pv_new188.194250.925326.20316.0
Pd_pv203.323271.098352.42716.0
Pd_vnew188.194250.925326.20310.0
P_h292.651390.202507.2635.0
Pm_3137.931183.908239.08011.0
Pm193.97258.627336.21515.0
Po_d198.424264.565343.93516.0
Po119.78159.707207.6196.0
P191.28270.0351.0005.0
Pr_3136.734182.312237.00611.0
Pr204.706272.941354.82313.0
Pt_new172.712230.283299.36810.0
Pt172.712230.283299.36810.0
Pt_pv220.955294.607382.98916.0
Pt_pv_ZORA220.953294.604382.98516.0
Pt_ZORA172.711230.281299.36510.0
Pu_h333.587444.783578.21816.0
Pu190.844254.458330.79516.0
Pu_s158.508211.344274.74716.0
Pa189.237252.316328.01113.0
Pa_s145.182193.576251.64911.0
Pb_d178.384237.846309.20014.0
Pb_d_rel2178.357237.809309.15214.0
Pb_d_rel178.357237.809309.15214.0
Pb73.4897.973127.3654.0
Pd_new188.194250.925326.20310.0
Pd188.194250.925326.20310.0
Pd_pv_new188.194250.925326.20316.0
Pd_pv203.323271.098352.42716.0
Pd_vnew188.194250.925326.20310.0
Pm_3137.931183.908239.08011.0
Pm193.97258.627336.21515.0
Po_d198.424264.565343.93516.0
Po119.78159.707207.6196.0
Pr_3136.734182.312237.00611.0
Pr204.706272.941354.82313.0
Pt_new172.712230.283299.36810.0
Pt172.712230.283299.36810.0
Pt_pv220.955294.607382.98916.0
Pt_pv_ZORA220.953294.604382.98516.0
Pt_ZORA172.711230.281299.36510.0
Pu_h333.587444.783578.21816.0
Pu190.844254.458330.79516.0
Pu_s158.508211.344274.74716.0
Ra_sv178.025237.367308.57710.0
Rb_pv91.439121.919158.4957.0
Rb_sv165.017220.022286.0299.0
Re169.662226.216294.0817.0
Re_pv169.667226.223294.09013.0
Rh_new171.747228.996297.6959.0
Rh171.75229.0297.7009.0
Rh_pv_new185.556247.408321.63015.0
Rh_pv203.602271.47352.91115.0
Rn114.091152.121197.7578.0
Ru_new159.953213.271277.2528.0
Ru159.957213.276277.2598.0
Ru_pv_new180.037240.049312.06414.0
Ru_pv172.822230.429299.55814.0
Ru_sv239.141318.855414.51216.0
Sb129.028172.037223.6485.0
Sc116.072154.763201.1923.0
Sc_sv_h285.522380.696494.90511.0
Sc_sv166.998222.664289.46311.0
Se_GW158.666211.555275.0226.0
Se158.651211.534274.9946.0
S_h301.827402.436523.1676.0
Si_d_GW_nr184.004245.338318.9394.0
Si_d_GW184.009245.345318.9494.0
Si_h_old285.109380.146494.1904.0
Si_h285.109380.146494.1904.0
Si_nopc184.009245.345318.9494.0
Si184.009245.345318.9494.0
Si_pv_GW356.322475.096617.62510.0
Si_sv_GW_nr356.326475.101617.63112.0
Si_sv_GW356.322475.096617.62512.0
Sm_3132.815177.087230.21311.0
Sm193.136257.515334.76916.0
Sn_d180.817241.09313.41714.0
Sn_GW77.427103.236134.2074.0
Sn77.427103.236134.2074.0
S194.016280.0364.0006.0
Sr_sv171.961229.282298.06710.0
Sr171.961229.282298.06710.0
Sb129.028172.037223.6485.0
Sc116.072154.763201.1923.0
Sc_sv_h285.522380.696494.90511.0
Sc_sv166.998222.664289.46311.0
Se_GW158.666211.555275.0226.0
Se158.651211.534274.9946.0
Si_d_GW_nr184.004245.338318.9394.0
Si_d_GW184.009245.345318.9494.0
Si_h_old285.109380.146494.1904.0
Si_h285.109380.146494.1904.0
Si_nopc184.009245.345318.9494.0
Si184.009245.345318.9494.0
Si_pv_GW356.322475.096617.62510.0
Si_sv_GW_nr356.326475.101617.63112.0
Si_sv_GW356.322475.096617.62512.0
Sm_3132.815177.087230.21311.0
Sm193.136257.515334.76916.0
Sn_d180.817241.09313.41714.0
Sn_GW77.427103.236134.2074.0
Sn77.427103.236134.2074.0
Sr_sv171.961229.282298.06710.0
Sr171.961229.282298.06710.0
Ta167.75223.667290.7675.0
Ta_pv167.756223.675290.77811.0
Tb_3116.721155.628202.3169.0
Tb198.618264.824344.27119.0
Tc_new171.521228.694297.3027.0
Tc171.521228.694297.3027.0
Tc_pv_new197.642263.523342.58013.0
Tc_pv171.524228.699297.30913.0
Te131.236174.982227.4776.0
Te_rel131.234174.979227.4736.0
Th185.587247.449321.68412.0
Th_s127.119169.492220.34010.0
Ti133.747178.33231.8294.0
Ti_pv166.753222.338289.03910.0
Ti_sv_GW234.428312.571406.34212.0
Ti_sv_h291.524388.698505.30712.0
Ti_sv_new2205.957274.61356.99312.0
Ti_sv_new205.957274.61356.99312.0
Ti_sv205.93274.574356.94612.0
Tl_d177.797237.063308.18213.0
Tl67.60590.14117.1823.0
Tm_3111.916149.221193.9879.0
Tm193.065257.419334.64523.0
U189.462252.616328.40114.0
U_s156.802209.069271.79014.0
V144.408192.543250.3065.0
V_pv197.756263.675342.77811.0
V_sv_h292.998390.664507.86313.0
V_sv_new197.755263.673342.77513.0
V_sv197.756263.675342.77813.0
W167.293223.057289.9746.0
W_pv_new167.293223.057289.97412.0
W_pv167.299223.065289.98512.0
Xe114.823153.098199.0278.0
Xe114.823153.098199.0278.0
Yb_2_n108.514144.685188.09110.0
Yb_284.407112.543146.3068.0
Yb189.771253.028328.93624.0
Y_sv158.731211.641275.13311.0
Yb_2_n108.514144.685188.09110.0
Yb_284.407112.543146.3068.0
Yb189.771253.028328.93624.0
Zn207.545276.727359.74512.0
Zn_pv282.455376.607489.58918.0
Zr115.974154.632201.0224.0
Zr_sv_GW230.877307.836400.18712.0
Zr_sv_new172.424229.898298.86712.0
Zr_sv172.379229.839298.79112.0

 

Recommended PAW potentials for DFT calculations using vasp.5.2

The following table reports in bold face the recommended potentials for calculations using vasp.5.2. This list of potentials is fully compatible with the Medea user interface distributed by Materials Design (http://www.materialsdesign.com/) facilitating a simple migration between the standard VASP version and the Materials Design MedeA user interface.

More details on the potentials are reported in the follow up sections. All  distributed potentials have been tested using standard DFT-"benchmark" runs (see the data_base file in the released tar files). In most cases, the potentials are literally identical to the previous releases, but all potentials have been recalculated using a new version of the PAW generation code to include additional information allowing for calculations using meta-GGA functionals. The present potentials can be used in VASP.4.6, but we strongly recommend to use them only in VASP.5.X, since some compatibility issues might emerge (specifically LDA+U results might differ substantially between vasp.5.2 and vasp.4.6 using these new potentials, since a different PAW sphere radius is used by both version for these new potentials).

The reported default cutoffs (in eV) are for the PBE potentials, and might differ slightly for LDA potentials. The corresponding distribution directory of the potential is created by adding underscores between the elemental name and the extensions ``_'', e.g Li sv becomes Li_sv.

Important Note: If dimers with short bonds are present in the compound (O$ _2$, CO, N$ _2$, F$ _2$, P$ _2$, S$ _2$,  Cl$ _2$), we recommend to use the _h potentials. Specifically, C_h, O_h,  N_h, F_h,  P_h, S_h,  Cl_h.

Element (and appendix)default cutoff ENMAX (eV)valency
H     2501
H  AE10001
H  h7001
H  s2001
He    4792
Li1401
Li sv 4993
Be    2482
Be sv3094
B     3193
B  h7003
B  s2693
C     4004
C  h7004
C  s2744
N     4005
N  h7005
N  s2805
O     4006
O  h7006
O  s2836
F     4007
F  h7007
F  s2907
Ne    3448
Na1021
Na pv 2607
Na sv6469
Mg    2002
Mg pv4048
Mg sv49510
Al    2403
Si    2454
P     2555
P  h3905
S     2596
S  h4026
Cl    2627
Cl h4097
Ar    2668
K  pv1177
K  sv 2599
Ca pv1208
Ca sv 26710
Sc1553
Sc sv 22311
Ti1784
Ti pv22210
Ti sv 27512
V1935
V  pv26411
V  sv 26413
Cr2276
Cr pv 26612
Cr sv39514
Mn2707
Mn pv 27013
Mn sv38715
Fe    2688
Fe pv29314
Fe sv39116
Co    2689
Co pv27115
Co sv39017
Ni    27010
Ni pv36816
Cu    29511
Cu pv36917
Zn    27712
Ga1353
Ga d  28313
Ga h40513
Ge1744
Ge d  31014
Ge h41014
As    2095
As d28915
Se    2126
Br    2167
Kr    1858
Rb pv1227
Rb sv 2209
Sr sv 22910
Y  sv 20311
Zr sv 23012
Nb pv20911
Nb sv 29313
Mo2256
Mo pv22512
Mo sv 24314
Tc2297
Tc pv 26413
Tc sv31915
Ru2138
Ru pv 24014
Ru sv31916
Rh2299
Rh pv 24715
Pd    25110
Pd pv25116
Ag    25011
Ag pv29817
Cd    27412
In963
In d  23913
Sn1034
Sn d  24114
Sb    1725
Te    1756
I     1767
Xe    1538
Cs sv 2209
Ba sv 18710
La    21911
La s1379
Ce    27312
Ce h30012
Ce 317711
Pr27313
Pr 3  18211
Nd25314
Nd 3  18311
Pm25915
Pm 3  17711
Sm25816
Sm 3  17711
Eu25017
Eu 2  998
Eu 31299
Gd25618
Gd 3  1549
Tb26519
Tb 3  1569
Dy25520
Dy 3  1569
Ho25721
Ho 3  1549
Er 21208
Er 3  1559
Er29822
Tm25723
Tm 3  1499
Yb25324
Yb 2  1138
Lu25625
Lu 3  1559
Hf2204
Hf pv 22010
Hf sv23712
Ta2245
Ta pv 22411
W2236
W  pv 22312
Re    2267
Re pv22613
Os    2288
Os pv22814
Ir    2119
Pt    23010
Pt pv29516
Au    23011
Hg    23312
Tl903
Tl d  23713
Pb984
Pb d  23814
Bi1055
Bi d  24315
Po1606
Po d  26516
At1617
At d  26617
Rn    1528
Fr sv 2159
Ra sv 23710
Ac    17211
Th    24712
Th s16910
Pa    25213
Pa s19311
U     25314
U  s20914
Np    25415
Np s20815
Pu    25416
Pu s20816
Am    25617
Cm    25818

Hydrogen like potentials are supplied for a valency between 0.25 and 1.75  as listed in the table below:

Element (and appendix)default cutoff ENMAX (eV)valency
H  .252500.2500
H  .332500.3300
H  .422500.4200
H  .52500.5000
H  .582500.5800
H  .662500.6600
H  .752500.7500
H  1.252501.2500
H  1.332501.3300
H  1.52501.5000
H  1.662501.6600
H  1.752501.7500








https://blog.sciencenet.cn/blog-567091-870150.html

上一篇:USPEX手册解读:学习从手册开始
下一篇:VASP资源持续收集
收藏 IP: 221.10.91.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-5-27 06:33

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部