气宇轩分享 http://blog.sciencenet.cn/u/yufree

博文

乱弹悖论

已有 2728 次阅读 2011-3-5 13:39 |个人分类:生活点滴|系统分类:生活其它|关键词:学者| 矛盾, 理发师, 罗素悖论

1 罗素悖论

这里不讨论罗素悖论的数学抽象版,仅仅讨论简化版理发师悖论。一位理发师说:“我只帮所有不自己刮脸的人刮脸。”那么理发师是否给自己刮脸呢?如果他给的话,但按照他的话,他就不该给自己刮脸(因為他"只"帮不自己刮脸的人刮脸);如果他不给的话,但按照他的话,他就该给自己刮脸(因为是"所有"不自己刮脸的人,包含了理发师本人),于是矛盾出现了。与此类似的还有书目悖论

这个问题曾直接导致第三次数学危机,最后是通过在公理化体系中加入真类与集合的定义来解决的。在理发师悖论中的解释就是给理发师的话加一个前提“除了理发师本人以外”,这样其本身的特殊性就被排除了。

而这就产生了两个问题,其本身的特殊性是什么?理发师究竟该不该自己理发?

第一个问题,其本身的特殊性在于理发师本身所具有的理发特性,用集合的观点说就是理发师这个集合被包含在了自身之中作为了一个元素,而这个元素却是特殊的,于是罗素在自己的公理体系中定义了集合中元素不能包含自身,但其实这只是维护了罗素公理体系的完整性却没有解决掉这个悖论。

第二个问题的一般性表述就是存不存在一个包括理发师的集合,因为理发师本身可以看成一个集合,这句话的抽象表述就是集合的总体是神马?在罗素的公理体系中我们将它定义为真类,有了类的定义却可能产生进一步的问题,例如真类是否具有集合的所有特性并存在更特殊的性质来避免产生在递归中出现的真类的集合是否是真类的问题。

2 谎言悖论

西元前6世纪,克利特哲学家埃庇米尼得斯(Epimenides)说了一句很有名的话:“所有克利特人都说谎。”如果埃庇米尼得斯所言为真,那么克利特人就全都是说谎者,身为克利特人之一的埃庇米尼得斯自然也不例外,于是他所说的这句话应为谎言,但这跟先前假设此言为真相矛盾;假设此言为假,那么也就是说有部分克利特人是不说谎的,则表示埃庇米尼得斯说谎,仍符合假设(即埃庇米尼得斯属于克利特岛的人中说谎的部分)。因此,这句话一定是错的。这个悖论严格来说只能说是错误表述,但如果将这句话的内涵限定为说话者本人而不是所有人,那就是悖论了。类似的表述如堂吉诃德悖论、庄子言尽悖、苏格拉底的无知论等等的背后都有这种概念自指带来的问题。

3 层次性解释

在谎言悖论上,可以看出:我们对一个语句的判定,与其内容上的推理,会对同一句话产生两个相互矛盾的解释。那么,这里是否可以采用罗素在公理化体系中的方法,进行一个层次性的定义来消除悖论呢?例如,我们将对语段的直接判定设为全真判定,但要规定这个全真判定不对自身进行内涵判定,由此产生悖论的推理将被消除。同时我们会看到这样做事实上改变了原有判定的判定范围,也就是说,在存在全真判定的理论体系中不存在自身的判定,如果我们再定义出一个更高层次的判定来对所有的全真判定进行真假判定,那就可能导致产生类似罗素体系的局限性,换句话讲,会不断出现更高层次的判定来对下一层次判定进行判定。但这就会产生一个问题:是否存在最高层次的判定?或者说绝对的、不可怀疑的真理是否存在?

3.1 答案一 存在

在很多认识论体系中关于绝对真理的存在更多的是一种直觉上的信仰,也就是说高层次的绝对真理是客观存在的。但哥德尔却从数学(更多是数理逻辑)上证明了如下的命题:如果存在一个更高层次的真理且我们认定其为真,那么其自身不具备可证明性(哥德尔证明的是希尔伯特所主张的PM系统中的算术一致性即便是真的也不可被证明,引申一步讲就是在一个完备的数理逻辑系统中总会存在那么几条公理是无法被证明的,这里可能存在转义)。有意思的是,如果将其外延扩大,我们可以得出理性本身就不具备可证明性,这一证明好像数学中的公理,只有认定了公理不可推翻才能进行以下的讨论(事实上这一观点在彭加莱的约定论中体现得更好)。但这样就将我们限制在了公理体系中,那么是否可以对绝对真理的存在说不呢?

3.2 答案二 不存在

这一主张广泛的被不可知论者所持有,在一个不可知论者来看:受限于个人认知水平,我们无法严格的认定绝对真理的存在。由此,如果是一个不可知论者来看待哥德尔的工作,就会得出认知的终点根本就没有,而我们的生活建立在广泛的、不严格的逻辑体系中。但这不代表不可知论者就根本上否定了逻辑,只是保留了目前我们智力还没达到可以构建更完整的体系的观点。

返回来重新说上面两个悖论就会发现,即便可以用一些限定的方法来使悖论不存在,也不能真正意义上弥补这其中隐含的逻辑公理体系的不完整,但或许存在另一条思路来解释这些悖论也说不定。

今天之所以想到这个问题也是事出有因,最近发现一些自诩代表真理、掌握真知的人所写的文章中充满了一种强硬的论调,事实上做研究的过程所能得到的结论的应用范围总是有局限性的,用不完整的论据是很难给出决定性的结论的。宣布一件事的真假时最好要列出所有的可能性。例如:在科普这件事上,公众最容易记住的可能就是一些简单的结论,而我的观点是科普不仅仅只局限于观点与结论的推广,而更多意义上是鼓励人们进行自己的思考,所以结论并不重要,重要的是将这一思考过程完整的进行展示,为了终结一个错误观点而采用隐藏不利论据的手段是极为不可取的。

知识不能使人优越,它仅仅使人感到谦卑。

update

2011.3.5晚 修改标点,更新少量内容



http://blog.sciencenet.cn/blog-430956-418970.html

上一篇:《逻辑的引擎》读书笔记
下一篇:科苑ipv6攻略

5 彭海杰 侯成亚 苏红 鲍得海 yinglu

发表评论 评论 (2 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2020-5-31 19:43

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部