肖建华的个人博客分享 http://blog.sciencenet.cn/u/肖建华

博文

理性力学与工程力学:玩火自焚的应变概念 精选

已有 13922 次阅读 2013-10-13 17:19 |个人分类:生活点滴|系统分类:科研笔记| 工程力学

 

      早期,基于胡克定律,在最基本的概念上,弹性力学中有两个应变定义:1)长度变化量与原长的比,称为柯西应变;2)当前长度与原长比的对数,称为亨奇应变。

      到了1950S以后,格林应变概念成为主流,它是:3)现长度平方与原长度平方的差与原长平方的比。

而理性力学在1960S以后的研究工作基本上是用群变换概念来引出应变概念,也就是4)局部位形的微分变换,称为形变张量。再由此而来应变概念,但是,对其数学形式及物理属性还缺乏共识。

理性力学把物质的对称性、各向同性、各向异性、极性、等现代物理概念引入到连续介质概念中,从而,提出了一般性意义上的本构方程的建立方法(使用张量不变量的方法)。但是,此后,在无法达成应变概念的共识情况下,对运动方程的研究基本没有进行。

如果我们仔细考察这段历史,就会发现这样的一个特点:A)应力形式的运动方程,这四个使用不同应变概念的学派是几乎的高度一致。B)对微小变形的胡克弹性本构方程,这四个使用不同应变概念的学派也是几乎的高度一致。C)对微小变形,这四个使用不同应变概念的学派所得到的应变还是几乎的高度一致。

      但是,一旦是处理大变形问题,或者说是微小变形理论给出的结果与实际不符的问题,这四个不同学派所走出来的道路就大相庭径了。

      一)。玩柯西应变概念的,其一般的本构方程为:应力分量=该应力应变分量弹性系数X应变分量,从而有81个独立系数。就特定工程问题(或介质)而言,如何简化是以实际观测到的现象为转移的。因此,在数学上,应力分量是9个,形成一个向量,应变分量是9个,也形成一个向量。胡克定律就表达为联系这两个向量的9x9矩阵,称为物性参数。工业上的很多规程采用的是这个体系。其优点是:容纳非对称应力、应变概念,容纳各种属性的介质。

      这是工程力学采用的最经典的形式之一。

      二)玩格林应变概念的,应变张量必定是对称的,从而,应力张量也必是对称的,从而各自只有6个独立分量。这样,胡克定律的独立系数是36个,胡克定律就表达为联系应力应变向量的6x6矩阵。

      我们要问,这个应力(应变)对称性从那来的呢?从主观定义而来!为何大家乐于接受呢?很多介质的变形应变(应力)的确是有对称性。客观上也是有依据的。

      这还是工程力学采用的最经典的形式之一。

      三)玩应变张量的理性化的,把应力、应变定义为二阶协变张量,使用介质的各向同性假定,可以用张量不变量的方法强有力的得到:胡克定律的独立系数是2个,也就是说两个拉梅常数。

      在这样的一个物性系数大为简化的条件下,往往是把运动方程直接的写成为位移场的二阶偏导数形式,从而,力学问题就归结为一个数理方程的求解问题。结论就是:力学,就是应用数学。

      四)源于橡胶弹性研究的,玩亨奇应变概念的则在高分子材料科学中(含流变学)找到了知音。他们发展了它们自身的应力应变本构关系,视张量协变性为无物。

      在大家欢呼弹性力学理性化,与当时的、时髦的协变性原理一致时,在欢庆一系列长期得不到解决的力学问题(杆、板、壳)得到理论解析解以后,在欢庆有极介质变形给出了液晶、压电现象的变形力学理论时,基于格林应变概念的二阶协变张量形式力学体系就成为理性力学与工程力学的“共识性理论”。

 

      但是,好景不长。介质的各向异性行为造成了二者的第一类破裂。在理性力学框架下,是增加物性参数的个数。在工程力学框架下,最成功的办法是使用柯西应变概念,假定某些应变分量(或应力分量)为零,使用三个独立的位移场分量,而放弃在格林应变概念下的所谓“位移协调方程”。同时,也否定了物性参数张量的存在性(或形式性)。

      变形的非线性行为造成了二者的第二类破裂。理性力学是使用张量不变量表出的变形能展开式的高阶项形式来引出非线性。而工程力学是以某些物性系数的非常数性来引出非线性,而且是一如既往的无视张量不变性。

      复杂变形的形式表达方式及运动方程等其它论题造成了二者的第三类破裂。如工程力学上采用亨奇应变,而理性力学是不接受的。岩石力学中采用摩擦角、孔隙度、饱和度等概念则在理性力学中几乎没有反映。工程力学上接受的东西要远多于理性力学所归纳的东西。

      这样,抛弃理性力学而“自由”的开发工程力学理论也就成为自那个时期以后的主题了。

      以上三个破裂的根本均出自:应变概念。理性力学在应变概念研究上没有达成内部共识、也没有达成与工程力学的共识的后果,就是自动退出工程应用。而工程力学对理性力学中各类应变概念(提出了,但是没有在工程上用)的藐视,也就使得自身只能建立一系列非本质的应变相关概念,从而在理论形式上和本质上失去内在的协调性。

 

      如果说:理性力学(格林张量应变)把81个物性系数先是变成36个系数,最后是变成了2个系数,使得一系列的工程力学问题得到解决,从而使得自身的地位被置于教科书地位的话,在理论形式上的成功和在揭示微小变形运动本质上的成功之处就是它被现代实际工程力学问题抛弃的原因。

      而工程力学“自由自在”的研究也使得自身陷入自相矛盾和与基本力学(物理)规律矛盾的风险之中。工程力学在应变概念上的“自由自在”的研究是必定以牺牲普遍性而强调特殊性为代价,在否定理性力学的同时也否定了自身的科学性理论基础。

      结论:理性力学,如果只不过是出于某种主观的原则(如协变张量性)而无视工程上的实际应变应力概念的话,那么被工程力学抛弃是必然的。要发展,就必须依据事实来构造有广泛归纳性、深刻性的形式理论。而工程力学,如果抛弃理性力学的基本原则(那怕它们是正确的),抛弃它的一般化形式体系,也就只能在自相矛盾中走进怪圈之中。

      理论科学与工程科学的关系就是这么复杂。

 

 

 



https://blog.sciencenet.cn/blog-39419-732637.html

上一篇:成也萧何,败也萧何:对基础科学的历史性反思
下一篇:经典力学中两条路线的斗争
收藏 IP: 222.88.196.*| 热度|

8 徐晓 郑小康 田云川 牛文鑫 强涛 刘孟杰 trtr3939 luxiaobing12

该博文允许注册用户评论 请点击登录 评论 (2 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-12-23 14:17

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部