催化中国, 中国催化分享 http://blog.sciencenet.cn/u/catachina 化学家(www.chemj.cn)

博文

Copper-Free Click Chemistry

已有 6740 次阅读 2007-10-19 20:12 |个人分类:催化科技导读

Copper-Free Click Chemistry

上次本人博文介绍了click chemistry,今天看到一条关于click chemistry的报道,转过来分享一下!!

【化学知识普及】化学的新发展方向-Click chemistry(转自小木虫)
http://www.sciencenet.cn/blog/user_content.aspx?id=9094

A new reagent developed by chemistry professor Carolyn R. Bertozzi and coworkers at the University of California, Berkeley, eliminates the toxicity usually associated with a rapid and irreversible reaction strategy commonly known as "click chemistry" (Proc. Natl. Acad. Sci. USA, DOI: 10.1072/pnas.0707090104). This tweak to remove copper catalysts makes the reaction, azide-alkyne cycloaddition, biologically friendly and thus useful for labeling biomolecules in cells.


Proc. Natl. Acad. Sci. USA © 2007

Copper-free click chemistry labels cell surface carbohydrates (green), which then move inside the cell.The reagent helps Bertozzi and her team study dynamic biochemical processes that are otherwise difficult to follow in real time. Bertozzi is particularly interested in studying glycosylation, the addition of sugar molecules to proteins. The reaction is tough to track because the sugar molecules, or glycans, are continuously recycled. "Most imaging of carbohydrates uses fixed systems," says Jeremy M. Baskin, a grad student in Bertozzi's lab and lead author of the report. "You can take a snapshot, but you can’t make the equivalent of a movie."

Azides make a handy tag for labeling biomolecules. They don't react with other molecules in the system, and they can be added to a range of biomolecules, including sugars, lipids, and proteins.

Unfortunately, the two reactions most commonly used to affix fluorescent or other labels to azide-tagged biomolecules have limitations. The Staudinger ligation, which forms an amide bond between the azide and an ester-derivatized phosphine, is too slow. Azide-alkyne cycloaddition is much faster, but the conventional copper catalysts required are toxic to living systems.


DIFLUORINATED CYCLOOCTYNEBertozzi's team has designed a reagent that eliminates those copper catalysts. "This copper-free chemistry is really designed for applications that require this extra burden of nontoxicity," Baskin says. "I see it as one reaction in a family of click chemistries."

The UC Berkeley researchers speed up the reaction even without a catalyst by using a difluorinated cyclooctyne instead of the usual terminal alkyne. The ring strain and the electron-withdrawing difluoro group activate the alkyne for copper-free click chemistry.

Bertozzi and coworkers use the reagent to attach fluorescent labels to cells with azide-containing sialic acid in their surface glycans. The team studied the dynamics of glycan trafficking over the course of 24 hours with no indication that the reaction or the labels perturb the process




https://blog.sciencenet.cn/blog-3913-9336.html

上一篇:挥发性有机物废气净化技术-燃烧法
下一篇:挥发性有机化合物净化催化剂研究进展
收藏 IP: .*| 热度|

0

发表评论 评论 (0 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-4-26 00:43

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部