PerfectLight06的个人博客分享 http://blog.sciencenet.cn/u/PerfectLight06

博文

光催化CO₂还原基础知识

已有 1547 次阅读 2024-6-26 09:19 |系统分类:科研笔记

01

迄今为止,已经发展了多种技术可将CO₂转化为碳氢化合物或高附加值化学品,主要包括热催化[1,2]、生物催化[3]、光电催化[4,5]、电催化[6,7]和光催化还原[8-10]等。

传统热催化还原CO₂要在高温(至少500℃)和高压(10 bar)条件下进行[11]。光催化CO₂还原过程模拟自然光合作用,利用太阳能和光催化剂将CO₂和H₂O进行催化转化(亦称人工光合作用),在常温、常压条件下便可实现太阳能燃料和高附加值化学品的生产,如:甲醇、乙醇、碳氢化合物等[12,13],如图1所示。因此,光催化CO₂还原也被认为是解决全球能源和环境问题的最有前途的方案之一。近年来,光催化CO₂还原的相关研究日渐增多。

相比于传统热催化方法,该反应具有如下四大优势[14]:

① 反应外部能量供应仅为太阳能,取之不尽用之不竭;

② 反应以H₂O和CO₂为反应原料,易于获取;

③ 反应条件温和,一般为常温、常压;

④ 反应无二次污染。

图1. A自然光合作用,B人工光合成示意图[12]

02

光催化CO₂还原反应是一个复杂的多步过程。一般情况下,该反应过程主要涉及如下三个步骤[14]:

① 半导体光催化剂受到能量大于其禁带宽度(Eg)的光激发;

② 光生电子和光生空穴的分离;

③ 光生电子迁移到光催化剂表面与CO₂和H⁺发生反应并形成还原产物,光生空穴与H₂O发生氧化反应产生O₂。

整个光催化CO₂还原反应过程可以在纯气相中发生,也可在溶液体系中发生[12]。

图2. 光催化CO₂还原示意图[13].

03

目前,光催化CO₂还原反应的产物主要包括:C1类产物(CO、CH₄、CH₃OH、HCOOH)和C2及C2+类产物(C₂H₄、C₂H₆、C₃H₆、C₂H₅OH等)。在化工领域中,光催化CO₂还原反应的产物分别具有不同作用[15,16]。

① CO主要可被用作费托合成反应的原料气,用于生产高碳类化学品;

② CH₄是天然气的主要成分,同时也可被用于CO₂的重整反应;

③ 液态产物CH₃OH和HCOOH主要可被用于燃料电池,CH₃OH也可作汽油的添加剂;

④ 乙烯主要用于聚乙烯和乙二醇的生产,乙烷用于制备乙烯。乙醇主要应用于化学溶剂、医疗和燃料中;

⑤ 乙二醇用于聚乙烯对苯二甲酸酯(涤纶的原料)的生产。

04

CO₂的C=O键能高达750 kJ·mol⁻¹,其线性对称分子结构使其不易被活化[12,17]。因此,在热力学上,CO₂的活化需要高能输入。受制于转化效率和选择性问题,目前的光催化CO₂还原研究仍处于实验室阶段。

现阶段光催化CO₂反应主要面临以下几方面挑战[18,12]:

① 催化剂有限的光吸收能力;

② 严重的光生载流子复合;

③ CO₂难于吸附活化;

④ 竞争反应(析氢反应)需被有效抑制;

⑤ 光催化剂的稳定性有待提升;

⑥ 待开发简便的催化剂合成工艺;

⑦ 缺乏大量反应机理研究,还原产物的选择性难于调控。

针对以上问题:

一方面可以通过设计合成高效催化剂提升光催化CO₂还原反应的转化效率和提高目标产物的选择性;

另一方面,泊菲莱科技期望与各位专家朋友们进行交流和深入合作,开发设计合理的反应器,通过优化反应工艺,积极推动光催化CO₂还原反应的相关研究。

参考文献:

[1]     Rui Ning, Rodriguez José A.*, Liu Chang-Jun* et. al., Hydrogenation of CO₂ to methanol on a Auδ+-In₂ O₃–x catalyst[J]. ACS Catalysis, 2020, 10, 11307-11317.

[2]     Hu Jingting, Wang Ye*, Deng Dehui* et. al., Sulfur vacancy-rich MoS₂ as a catalyst for the hydrogenation of CO₂ to methanol[J]. Nature Catalysis, 2021, 4, 242-250.

[3]     Gong Fuyu, Zhang Yanping* et. al., Li Yin*, Biological carbon fixation: From natural to synthetic[J]. Journal of CO₂ Utilization, 2018, 28, 221-227.

[4]     Dong Wan Jae, Lee Jong-Lam*, Zetian Mi*, et. al., Silver halide catalysts on GaN nanowires/Si heterojunction photocathodes for CO₂ reduction to syngas at high current density[J]. ACS Catalysis, 2022, 12, 2671-2680.

[5]     Qin Yin, Hu Liuyong*, Gu Wenling*, et. al., Iron single-atom catalysts boost photoelectrochemical detection by integrating interfacial oxygen reduction and enzyme-mimicking activity[J]. ACS Nano, 2022. DOI: 10.1021/acsnano.1c10303.

[6] Liu Shuai, Chen Yu*, Liu Xijun*, et. al., Coordination environment engineering to boost electrocatalytic CO₂ reduction performance by introducing boron into single-Fe-atomic catalyst[J]. Chemial Engineering Journal, 2022. DOI: 10.1016/j.cej.2022.135294.

[7] Luc Wesley, Chen Jingguang G.*, Jiao Feng* et. al., SO₂-induced selectivity change in CO₂ electroreduction[J]. Journal of the American Chemical Society, 2019, 141, 9902-9909.

[8] Liu Qiong, Xiang Zhangmin*, Wang Fuxian*, et. al., Regulating the *OCCHO intermediate pathway towards highly selective photocatalytic CO₂ reduction to CH₃CHO over locally crystallized carbon nitride[J]. Energy Environmental Science, 2022, 15, 225.

[9] Li Fang, Yue Xiaoyang, Xiang Quanjun*, et. al., Targeted regulation of exciton dissociation in graphitic carbon nitride by vacancy modification for efficient photocatalytic CO₂ reduction[J]. Applied Catalysis B: Environmental, 2021, 292, 120179.

[10] Hao Jingxuan, Min Yulin*, Li Hexing*, et. al., Utilizing new metal phase nanocomposites deep photocatalytic conversion of CO₂ to C₂H₄ [J]. Chemical Engineering Journal, 2021, 423, 130190.

[11]   Kovačič Žan, Likozar Blaž*, Huš Matej*, Photocatalytic CO₂ reduction: a review of Ab initio mechanism, kinetics, and multiscale modeling simulations[J]. ACS Catalysis, 10, 14984-15007.

[12] Shen Huidong, Peppel Tim*, Sun Zhenyu*, et. al., Photocatalytic reduction of CO₂ by metal-free-Based materials: recent advances and future perspective[J]. Solar RRL 2020, 4, 1900546.

[13] Li Xin, Yu Jiaguo*, Jaroniec Mietek* et. al., Cocatalysts for selective photoreduction of CO₂ into solar fuels[J]. Chemical Reviews, 2019, 119, 3962-4179.

[14] Fu Junwei, Yu Jiaguo*, Liu Min*, et. al., Product selectivity of photocatalytic CO₂ reduction reactions[J]. Materials Today, 2020, 32, 222-243.

[15]     Lin Huiwen, Zhang Huabin*, Ye Jinhuaet. al., Toward solar-driven carbon recycling[J]. Joule, 2022, 6, 1-21.

[16] Albero Josep, Peng Yong, García Hermenegildo*, et. al., Photocatalytic CO₂ reduction to C2+ products[J]. ACS Catalysis, 2020, 10, 5734−5749.

[17] Liu Lizhen, Huang Hongwei*, Ma Tianyi*, et. al., Surface sites engineering on semiconductors to boost photocatalytic CO₂ reduction[J]. Nano Energy, 2020, 75, 104959.

[18]     Gong Eunhee, Ali Shahzad, In Su-Ilet. al., Solar fuels: research and development strategies to accelerate photocatalytic CO₂ conversion into hydrocarbon fuels[J]. Energy Environmental Science, 2022. DOI: 10.1039/d1ee0271



https://blog.sciencenet.cn/blog-3550685-1439748.html

上一篇:光催化类期刊2024最新影响因子,完整版!
下一篇:AM杂志: 大剂量、高负载密度的单原子催化剂普适性制备
收藏 IP: 114.240.76.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-12-25 00:39

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部