冰川与地球分享 http://blog.sciencenet.cn/u/rock6783 求真、求实、识友

博文

地球科学原理之20 双层地震带的形成机制

已有 5696 次阅读 2009-4-1 16:40 |个人分类:地球科学|系统分类:科研笔记| 地球科学, 板块学说, 岛弧, 贝尼奥夫带, 双层地震带

广东海洋大学

廖永岩

(电子信箱:rock6783@126.com

 

上一回,我们讨论人类对双层地震带的认识过程后知道,只要确定震源的精度足够高,岛弧下的的贝尼奥夫带均表现为双层地震带。下面,我们将详细分析双层地震带的形成过程。

虽然板块学说无法解释双层地震带,若我们先放下板块学说,用板块学说出现前的地槽学说结合我们的新理论对这些现象进行解释,那就容易多了:其实,贝尼奥夫带,就是海沟处形成的深地槽。海沟处,由于地槽中来源于大陆的风化沉积物缺乏,地槽的两壁紧叠,下插至几百公里深的地幔中,最大可达720公里。海沟处,就是两地槽壁叠合的地面暴露处。

1 海洋岩石圈和大陆岩石圈对地槽作用力高度的比较及其对地槽的影响.

a,假设没有海水存在时海洋岩石圈和和大陆岩石圈水平作用力的高度比较;b,有海水存在时海洋岩石圈和大陆岩石圈水平作用力的高度比较;c,海洋岩石圈和大陆岩石圈对地槽的影响;d,海洋岩石圈和大陆岩石圈对地槽的影响(示去掉海水后的简图);A,大陆岩石圈;B,大陆岩石圈水平作用力高度;C,大陆岩石圈水平作用力方向;D,海水;E,海洋岩石圈水平作用力高度;F,海洋岩石圈;G,海洋岩石圈的水平作用力方向;H,地槽。

下面,我们具体分析岛弧处海沟下地槽的演化情况。因为岛弧往往形成于海洋岩石圈和大陆岩石圈之间,或海洋岩石圈和大陆岩石圈的交接处,所以,可以认为海洋岩石圈和大陆岩石圈分别位于岛弧海沟地槽的两侧。这样,冰后反弹,地球体积收缩时,地槽两侧的水平切线挤压作用,就可看成是海洋岩石圈和大陆岩石圈间的水平挤压作用。因为大陆岩石圈的平均厚度约33公里,而海洋岩石圈的平均厚度仅5-7公里,相对地球的半径来说,厚度不大。所以,假设我们不考虑岩石圈的密度变化的话,岩石圈可看一个质点:大陆岩石圈的质点位于大陆岩石圈的中间水平线上(如图1B);海洋岩石圈的质点位置也位于海洋岩石圈中间水平线上(如图1E)。这样,大陆岩石圈和海洋岩石圈相互间的切线挤压作用,就可看成是两质点间的相互水平方向的挤压作用(图1a)。由于海洋岩石圈的比重比大陆岩石圈大,海洋岩石圈质点的位置低,大陆岩石圈质点的位置高,地槽两侧的切线挤压力高度不一致(图1a)。同时,海洋岩石圈上有海水,这就使海洋岩石圈质点的位置更低(图1b),造成地槽两侧的切线挤压力高度差距更大(图1cd)。

2 海洋岩石圈和大陆岩石圈对地槽作用力高度的比较及其对贝尼奥夫带形成的影响.

a,海洋岩石圈形成的地槽,开始向大陆岩圈偏移;b,地槽已变深、变窄;c,地槽两壁叠合,已转化为贝尼奥夫带,地槽口转化为海沟,但倾斜度尚大(约90度);d,地槽已转化为贝尼奥夫带,并向大陆岩石圈下倾斜。A,大陆岩石圈;B,大陆岩石圈水平作用力高度;C,大陆岩石圈水平作用力方向; E,海洋岩石圈水平作用力高度;F,海洋岩石圈;G,海洋岩石圈的水平作用力方向;H,地槽; I,海沟; J,贝尼奥夫带。

冰后反弹期地球收缩时,在这个高度不一致的切线挤压力的作用下,地槽(H)转化为贝尼奥夫带(J),下部向岛弧下倾斜(图2d)。图2ab显示了海沟处的地槽如何形成贝尼奥夫带和海沟的过程。图3是根据Tatsumi Y.Eggins S.的图2.2的双层地震的贝尼奥夫带Tatsumi and Eggins, 1995改绘而成。我们保留了Tatsumi Y.Eggins S.的岛弧地形图和贝尼奥夫带,并在其贝尼奥夫带和双层地震带的上、下分别加上边界连线而成。上、下边界线(图3AB),勾画出了贝尼奥夫带的轮廓,也勾画出了地槽的外形轮廓。双层地震带的边界连线(图3BFEA),勾画出了构成贝尼奥夫带的地槽两层海洋岩石圈层(图3)。若地槽上、下两层海洋岩石圈叠合得相当紧密,即两层海洋岩石圈间的沉积物相当少的话,下层海洋岩石圈的上边界(图3E)和上层海洋岩石圈的下边界(图3F)基本叠合,两条线可用一条线表示。这时,除比较上、下海洋岩石圈的压力型等其它特征(Hudnut and Taber, 1987; Engdahl and Scholz, 1977; Ratchkovsky, et. al., 1997)外,很难区分双层地震带,即双层发地震带不明显。若地槽上、下两层海洋岩石圈叠合得不紧密,即两层海洋岩石圈间的沉积物较多的话,上、下海洋岩石圈层间空间较大,这时,就比较容易区分双层地震带Tatsumi and Eggins, 1995

3在高度不一致的切线挤压力作用下,海沟下地槽向岛弧下倾斜,形成贝尼奥夫带。

A,贝尼奥夫带(地槽)下边界;B,贝尼奥夫带(地槽)上边界;C,地槽两层岩石圈(双层地震带)间的沉积物或空间;D,地震震源位置;E,下层海洋岩石圈上边界;F,上层海洋岩石圈下边界;G,海洋岩石圈;H,海水;IA,岛弧;TA,海沟;“→”,示地震应力作用方向

冰后反弹造成的地球体积收缩,所引起的切线挤压力作用于贝尼奥夫带时,地槽(贝尼奥夫带)将不断地向岛弧下倾斜。地槽形成的早期,倾斜度(地槽与海平面夹角)较大,越是地槽形成的晚期,倾斜度越小。最后,地槽有可能叠加在岛弧下部。因为地槽向岛弧下的倾斜,是由于冰后反弹造成地球收缩,引起海洋侧岩石圈对地槽的切线挤压作用所致,所以,这时地槽的上、下壁(双层地震带)都应是挤压力,而没有拉张力的存在。

当冰后反弹造成的地球体积收缩停止,作用于贝尼奥夫带的切线挤压力也停止作用,地槽将在地球均衡调整作用下抬升。因为地槽(贝尼奥夫带)抬升,并向岛弧下折叠,是由于其下插入软流圈或地幔中,由于地槽的比重比地幔小,造成相对流体型地幔对地槽的均衡调整作用而引起的。这种均衡调整作用,在一定程度上,可以看成是地幔对地槽的浮力(见后述)。这种浮力是由下向上的。所以,这种浮力主要作用于地槽的下层岩石圈的下表面。因为地球内部物质的液态和固态性,主要由温度、压力、该物质的熔点共同决定,所以,在温度和该物质的熔点没有明显变化的前提下,受这种压力挤压,就造成贝尼奥夫带的下界面及其附近物质的液态性减弱,固态性增强,引起地震P-波速度呈正值,并逐渐增加,(见图4EPV所示)。贝尼奥夫带的上、下两层海洋岩石圈具有一定的厚度,有相对强的刚性,当其在地幔浮力的作用下上升,除非其断裂,要不然,它将整体性上升。这样,它将牵带和它相连的海沟至岛弧前沿的岩石圈一道上升。海沟至岛弧间的岩石圈上升,又会牵带和它相连的岛弧和火山弧区域的岩石圈上升。当岛弧和火山弧区域的岩石圈上升,就造成其下的压力下降。因岩石圈下的地幔物质,其温度超过常压下的该物质熔融温度,只是平时因为压力太大而呈固态。当其压力下降至一定程度,就会部分熔融而形成岩浆。因为贝尼奥夫带上方,即岛弧和火山弧下方,因贝尼奥夫带的上升而造成一定的负压(相对该点原有的压力而言),并形成岩浆房,所以,这个区域因压力下降物质的液态性增加,固态性减弱,地震P-波速度下降,呈负值(见图4EPV所示)。

4 贝尼奥夫带双层地震及其岛弧区域的地球物理学特征Tatsumi and Eggins, 1995

C,康拉德面(Conrad);M,莫霍面(Moho);EC,地震震源位置;EPV,地震P-波等速线;TA,海沟;AF,岛弧前沿;VF,火山弧前沿;VA,火山弧。EC,地震震源位置。

由于地幔浮力的作用,它将逐渐向岛弧下折叠。当冰后反弹造成的地球收缩停止,地槽的下层岩石圈失去切线挤压力的挤压。地槽不断向岛弧折叠的过程中,就造成地槽下层海洋岩石圈(双层地震带的下带)拉张伸长,因拉伸而断裂造成拉伸型地震(图3贝尼奥夫带下部箭头所示)。岛弧侧地槽壁,即上层海洋岩石圈(双层地震带的上带)挤压缩短,因挤压而断裂而造成挤压型地震(图3贝尼奥夫带上部箭头所示)。这种情形,正好和大多数其它双层地震的压力型相一致(Hudnut and Taber, 1987; Engdahl and Scholz, 1977; Ratchkovsky, et. al., 1997)。这也说明,现今的地球冰后反弹的切线挤压力已不明显,贝尼奥夫带主要处于均衡调整时期。

当然,纵观整个地槽的形成过程可知,这种压力是随着地槽的形成过程不断变化的,具体到某一部分的压力变化情况,要看地槽演化到了哪一个阶段之后才可能最后确定。所以,有些岛弧,上、下带并不一定具有典型双层地震带的典型特征。有的可能甚至刚好相反。

下插的地槽地壳,要发生地震,必须要有一定的能量,能造成地壳断裂。这种能量可以是张力,也可以是挤压力。在地槽形成和演化过程中,这种力量是不断变化的。在地槽形成的某个阶段,在地槽的某个区段,这种力量比较小,不足以造成地壳的断裂,就可能不形成地震。这样,就会在贝尼奥夫带上出现一个间断(Engdahl and Scholz, 1977),也如图3和图4所示的海沟与岛弧前沿间的下层地震带所出现的间断Tatsumi and Eggins, 1995。原则上,这种间断,是随着地槽的形成阶段而变化的。它受地槽所处的特殊几何学特征决定。所以,在这种层面上说,我们通过地震震源确定的贝尼奥夫带,其实并不完全代表构成地槽的完整地壳轮廓,它只代表有地壳断裂的部分——即有地震发生的部分而已。有些区域的双层地震带难以确定,一者是因为确定震源的精度不够,难以把地槽两侧壁上发生的地震区分开的原因;二者是因为地槽的一侧壁产生地震,而另一侧壁不产生地震或产生很少的地震,通过震源确定,难以确定地槽的两壁而难以确定双层地震带。而那些两层地槽壁都有震源,且因地槽演化的原因,地槽的两侧壁在这一阶段又相对分得较开的地槽,就相对容易观察到双层地震带。

以上我们分析了贝尼奥夫带的双层地震带形成过程。其实,在岛弧外,除有贝尼奥夫带外,世界上绝大多数火山,分布在岛弧。那么岛弧处的火山是怎么形成的呢?且听下回分解。

未完,待续。

下回预告地球科学原理之21  岛弧火山的形成机制

参考文献:

Engdahl E. R., Scholz C. H. A double Benioff zone beneath the central Aleutians; an unbending of the lithosphere. Geophysical Research Letters, 1977, 4: 473-476

Hudnut K. W., Taber J. J. Transition from double to single Wadati-Benioff seismic zone in the Shumagin Islands, Alaska. Geophysical Research Letters, 1987, 14: 143-146

Ratchkovsky N. A., Pujol J., Biswas N. N. Stress pattern in the double seismic zone beneath Cook Inlet, south-central Alaska. Tectonophysics, 1997, 281: 163-171

Tatsumi Y., Eggins S. Subduction zone magmatism. Cambridge: Blackwell Science, Inc. 1995. 1-49

 

(注:本“地球科学原理”系列,是根据廖永岩著,海洋出版社(20075月)出版的《地球科学原理》一书改编而来,转载者请署明出处,请不要用于商业用途 

[2] 标题:
发表评论人:dongping2009 [2009-4-1 21:07:48]     删除  回复

好吧,廖兄,我说了你别不高兴,关于板块构造的部分,包括贝尼奥夫带的部分,你应该更多地阅读一些最近的相关文献资料,否则的话,我还真没有办法评论得更多。当然,可以将这篇当作小说读一读,也是很有趣的。
举一个例子,请廖兄根据你的“理论”来解释,我们事实上不但观测到双地震带,还观测到三地震带了,如何解释之?是将板块再折叠一次?
严肃的说,我认为:现今板块构造学说对于贝尼奥夫带以及其中双地震带(包括三地震带)等的解释,最起码比你这篇文章中的解释要更客观、更接近实际情况。

博主回复:为了回复魏东平的评论,这里以张克亮和魏东平发表的的论文(张克亮, 魏东平. 环太平洋俯冲带内双地震带及其成因机制研究进展. 地球物理学进展, 2008, 23(1): 31-39)的图来说明,要不然大家看不清楚.下图是魏兄合作的论文的双层地震带。
下图是作者的双层地震带图。

 

下图是我将上图的折叠的海洋地壳标出(红色)和所谓的板块运动方向(蓝色)标出后的图,大家看看,是不是海洋壳折叠而成?

下图是作者认为和三层地震带图。


下图是我将上图的海洋壳(红色)标出后的图。大家看看,沿红色区域发生的地震带,是不是折叠的海洋壳?


下图是作者将上图的虚框部分放大,说这里的两层地震,加下面一层,共三层。这是三层吗?海洋壳需要折叠三次吗?







http://blog.sciencenet.cn/blog-3534-223775.html

上一篇:临走了,我能留下什么?
下一篇:地球科学原理之21 岛弧火山的形成机制

5 杨学祥 刘玉平 杨秀海 马丽丹 侯振宇

发表评论 评论 (16 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2020-9-23 05:45

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部