YucongDuan的个人博客分享 http://blog.sciencenet.cn/u/YucongDuan

博文

Analyze 12 PhiProblem for completeness and consistency(初学者版)

已有 890 次阅读 2024-10-16 11:04 |系统分类:论文交流

Analyzing The Completeness, Consistency, and Overlap Relationships of The 12 Philosophical Problems with DIKWP*DIKWP 

Yucong Duan

International Standardization Committee of Networked DIKWfor Artificial Intelligence Evaluation(DIKWP-SC)

World Artificial Consciousness CIC(WAC)

World Conference on Artificial Consciousness(WCAC)

(Email: duanyucong@hotmail.com)

Introduction

This analysis aims to apply the DIKWP Semantic Mathematics framework to a set of philosophical problems to reveal their mathematical meanings and relationships. By using the mathematical formulations of Data (D), Information (I), Knowledge (K), Wisdom (W), and Purpose (P), we will examine each problem individually and collectively in terms of completeness, consistency, and overlap relationships. Tables will be provided to summarize the components and highlight the mathematical interconnections.

Overview of DIKWP Semantic Mathematics

Before delving into the analysis, let's recall the key mathematical concepts:

  1. Data (D): Represented by equivalence classes based on shared semantic attributes (Sameness). Mathematically defined using equivalence relations.

  2. Information (I): Quantified differences between data elements (Difference). Modeled using distance metrics in metric spaces.

  3. Knowledge (K): Structured understanding formed through abstraction (Completeness). Represented as a complete and consistent formal system.

  4. Wisdom (W): Application of knowledge in decision-making, incorporating ethics (Decision Function).

  5. Purpose (P): Goal-directed behavior and alignment (Transformation Function).

Analysis of Individual Philosophical Problems1. The Mind-Body Problem

Overview:

Explores the relationship between mental states (mind) and physical brain states (body).

DIKWP Components and Mathematical Representations:

a. Data (D):

  • Semantic Attribute Set (S):

    S={Neural activity patterns,Brain regions,Subjective reports}S = \{ \text{Neural activity patterns}, \text{Brain regions}, \text{Subjective reports} \}S={Neural activity patterns,Brain regions,Subjective reports}

  • Data Concept Set (D):

    D={d∣d shares S}D = \{ d \mid d \text{ shares } S \}D={dd shares S}

  • Equivalence Relation (~): Defines sameness in neural data sharing identical attributes.

b. Information (I):

  • Information Semantics Processing Function (FI):

    FI:D→IFI: D \rightarrow IFI:DI

  • Distance Metric (δ): Measures differences between data classes (e.g., Euclidean distance between neural patterns).

  • Information Set (I):

    I={δ([di],[dj])∣[di],[dj]∈D/ ,[di]≠[dj]}I = \{ \delta([d_i], [d_j]) \mid [d_i], [d_j] \in D/~, [d_i] \neq [d_j] \}I={δ([di],[dj])[di],[dj]D/ ,[di]=[dj]}

c. Knowledge (K):

  • Knowledge Formation Function (FK):

    FK:I→KFK: I \rightarrow KFK:IK

  • Knowledge System (K):

    K={ϕ∣ϕ is a logical consequence of I}K = \{ \phi \mid \phi \text{ is a logical consequence of } I \}K={ϕϕ is a logical consequence of I}

  • Ensuring Completeness and Consistency:

    • Completeness Criterion:

      ∀ϕ∈L,ϕ∈K∨¬ϕ∈K\forall \phi \in L, \phi \in K \lor \neg \phi \in KϕL,ϕK¬ϕK

    • Consistency Criterion:

      ∄ϕ such that ϕ∈K and ¬ϕ∈K\nexists \phi \text{ such that } \phi \in K \text{ and } \neg \phi \in Kϕ such that ϕK and ¬ϕK

d. Wisdom (W):

  • Decision Function:

    W:{D,I,K,W,P}→D∗W: \{ D, I, K, W, P \} \rightarrow D^*W:{D,I,K,W,P}D

  • **Applies ethical considerations to knowledge for decision-making.

e. Purpose (P):

  • Purpose Tuple:

    P=(Input,Output)P = (\text{Input}, \text{Output})P=(Input,Output)

  • Transformation Function:

    T:Input→OutputT: \text{Input} \rightarrow \text{Output}T:InputOutput

Analysis:

  • Completeness: Knowledge KKK must account for all logical propositions regarding the mind-body relationship, ensuring no gaps.

  • Consistency: Theories within KKK must not contradict each other.

  • Overlap with Other Problems: Shares concepts with the Hard Problem of Consciousness (e.g., subjective experience).

Summary Table:

ComponentMathematical Representation
Data (D)D={d∣d shares S}D = \{ d \mid d \text{ shares } S \}D={dd shares S}, with S={Neural patterns,Subjective reports}S = \{ \text{Neural patterns}, \text{Subjective reports} \}S={Neural patterns,Subjective reports}
Information (I)I={δ([di],[dj])}I = \{ \delta([d_i], [d_j]) \}I={δ([di],[dj])}, FI:D→IFI: D \rightarrow IFI:DI
Knowledge (K)K={ϕ∣ϕ is a logical consequence of I}K = \{ \phi \mid \phi \text{ is a logical consequence of } I \}K={ϕϕ is a logical consequence of I}, FK:I→KFK: I \rightarrow KFK:IK
Wisdom (W)W:{D,I,K,W,P}→D∗W: \{ D, I, K, W, P \} \rightarrow D^*W:{D,I,K,W,P}D
Purpose (P)P=(Input,Output)P = (\text{Input}, \text{Output})P=(Input,Output), T:Input→OutputT: \text{Input} \rightarrow \text{Output}T:InputOutput
2. The Hard Problem of Consciousness

Overview:

Questions how physical processes give rise to subjective experiences (qualia).

DIKWP Components and Mathematical Representations:

a. Data (D):

  • S={Neural correlates,Qualia reports}S = \{ \text{Neural correlates}, \text{Qualia reports} \}S={Neural correlates,Qualia reports}

  • D={d∣d shares S}D = \{ d \mid d \text{ shares } S \}D={dd shares S}

b. Information (I):

  • FI:D→IFI: D \rightarrow IFI:DI

  • III captures the differences highlighting the explanatory gap.

c. Knowledge (K):

  • K={ϕ∣ϕ is a logical consequence of I}K = \{ \phi \mid \phi \text{ is a logical consequence of } I \}K={ϕϕ is a logical consequence of I}

  • May exhibit incompleteness due to the hard problem's nature.

d. Wisdom (W):

  • Recognizes limitations in current knowledge.

e. Purpose (P):

  • Aims to develop new theories bridging the gap.

Analysis:

  • Completeness: Challenged due to the inability to fully derive subjective experience from physical data.

  • Consistency: Must avoid contradictions in theoretical frameworks.

Summary Table:

ComponentMathematical Representation
Data (D)D={d∣d shares S}D = \{ d \mid d \text{ shares } S \}D={dd shares S}, with S={Neural correlates,Qualia reports}S = \{ \text{Neural correlates}, \text{Qualia reports} \}S={Neural correlates,Qualia reports}
Information (I)I=FI(D)I = FI(D)I=FI(D) capturing explanatory gaps
Knowledge (K)K={ϕ∣ϕ is a logical consequence of I}K = \{ \phi \mid \phi \text{ is a logical consequence of } I \}K={ϕϕ is a logical consequence of I}
Wisdom (W)Acknowledges limitations, W:{D,I,K,W,P}→D∗W: \{ D, I, K, W, P \} \rightarrow D^*W:{D,I,K,W,P}D
Purpose (P)Seeks new theories, P=(Input,Output)P = (\text{Input}, \text{Output})P=(Input,Output)
3. Free Will vs. Determinism

Overview:

Explores whether human actions are freely chosen or predetermined.

DIKWP Components and Mathematical Representations:

a. Data (D):

  • S={Neural data,Behavioral observations}S = \{ \text{Neural data}, \text{Behavioral observations} \}S={Neural data,Behavioral observations}

  • D={d∣d shares S}D = \{ d \mid d \text{ shares } S \}D={dd shares S}

b. Information (I):

  • FI:D→IFI: D \rightarrow IFI:DI

  • Identifies patterns suggesting determinism or randomness.

c. Knowledge (K):

  • Theories about free will and determinism.

  • K={ϕ∣ϕ is a logical consequence of I}K = \{ \phi \mid \phi \text{ is a logical consequence of } I \}K={ϕϕ is a logical consequence of I}

d. Wisdom (W):

  • Considers ethical implications for moral responsibility.

e. Purpose (P):

  • Understand human agency, inform legal and ethical systems.

Analysis:

  • Completeness: Requires exhaustive exploration of theories.

  • Consistency: Must reconcile conflicting theories logically.

Summary Table:

ComponentMathematical Representation
Data (D)D={d∣d shares S}D = \{ d \mid d \text{ shares } S \}D={dd shares S}, with S={Neural data,Behavior}S = \{ \text{Neural data}, \text{Behavior} \}S={Neural data,Behavior}
Information (I)I=FI(D)I = FI(D)I=FI(D) analyzing patterns
Knowledge (K)K={ϕ∣ϕ is a logical consequence of I}K = \{ \phi \mid \phi \text{ is a logical consequence of } I \}K={ϕϕ is a logical consequence of I}
Wisdom (W)Ethical decision-making, W:{D,I,K,W,P}→D∗W: \{ D, I, K, W, P \} \rightarrow D^*W:{D,I,K,W,P}D
Purpose (P)Understand agency, P=(Input,Output)P = (\text{Input}, \text{Output})P=(Input,Output)
4. Ethical Relativism vs. Objective Morality

Overview:

Debates whether moral principles are universal or culturally dependent.

DIKWP Components and Mathematical Representations:

a. Data (D):

  • S={Cultural practices,Moral codes}S = \{ \text{Cultural practices}, \text{Moral codes} \}S={Cultural practices,Moral codes}

  • D={d∣d shares S}D = \{ d \mid d \text{ shares } S \}D={dd shares S}

b. Information (I):

  • FI:D→IFI: D \rightarrow IFI:DI

  • Identifies differences and similarities between moral systems.

c. Knowledge (K):

  • Ethical theories derived from information.

  • K={ϕ∣ϕ is a logical consequence of I}K = \{ \phi \mid \phi \text{ is a logical consequence of } I \}K={ϕϕ is a logical consequence of I}

d. Wisdom (W):

  • Applies knowledge to promote understanding and tolerance.

e. Purpose (P):

  • Foster ethical understanding and respect for diversity.

Analysis:

  • Completeness: Must account for all cultural moral systems.

  • Consistency: Address potential contradictions between moral codes.

Summary Table:

ComponentMathematical Representation
Data (D)D={d∣d shares S}D = \{ d \mid d \text{ shares } S \}D={dd shares S}, with S={Cultural practices,Moral codes}S = \{ \text{Cultural practices}, \text{Moral codes} \}S={Cultural practices,Moral codes}
Information (I)I=FI(D)I = FI(D)I=FI(D) highlighting differences
Knowledge (K)K={ϕ∣ϕ is a logical consequence of I}K = \{ \phi \mid \phi \text{ is a logical consequence of } I \}K={ϕϕ is a logical consequence of I}
Wisdom (W)Ethical application, W:{D,I,K,W,P}→D∗W: \{ D, I, K, W, P \} \rightarrow D^*W:{D,I,K,W,P}D
Purpose (P)Promote understanding, P=(Input,Output)P = (\text{Input}, \text{Output})P=(Input,Output)
5. The Problem of Skepticism

Overview:

Questions the possibility of certain knowledge.

DIKWP Components and Mathematical Representations:

a. Data (D):

  • S={Perceptual experiences,Beliefs}S = \{ \text{Perceptual experiences}, \text{Beliefs} \}S={Perceptual experiences,Beliefs}

  • D={d∣d shares S}D = \{ d \mid d \text{ shares } S \}D={dd shares S}

b. Information (I):

  • FI:D→IFI: D \rightarrow IFI:DI

  • Highlights inconsistencies and doubts.

c. Knowledge (K):

  • Explores limits of knowledge.

  • K={ϕ∣ϕ is a logical consequence of I}K = \{ \phi \mid \phi \text{ is a logical consequence of } I \}K={ϕϕ is a logical consequence of I}

d. Wisdom (W):

  • Accepts uncertainty, guides practical decision-making.

e. Purpose (P):

  • Navigate doubt to function effectively.

Analysis:

  • Completeness: Challenged due to inherent uncertainty.

  • Consistency: Must avoid paradoxes and contradictions.

Summary Table:

ComponentMathematical Representation
Data (D)D={d∣d shares S}D = \{ d \mid d \text{ shares } S \}D={dd shares S}, with S={Experiences,Beliefs}S = \{ \text{Experiences}, \text{Beliefs} \}S={Experiences,Beliefs}
Information (I)I=FI(D)I = FI(D)I=FI(D) capturing inconsistencies
Knowledge (K)K={ϕ∣ϕ is a logical consequence of I}K = \{ \phi \mid \phi \text{ is a logical consequence of } I \}K={ϕϕ is a logical consequence of I}
Wisdom (W)Practical decisions under uncertainty, W:{D,I,K,W,P}→D∗W: \{ D, I, K, W, P \} \rightarrow D^*W:{D,I,K,W,P}D
Purpose (P)Function despite doubt, P=(Input,Output)P = (\text{Input}, \text{Output})P=(Input,Output)
6. The Problem of Induction

Overview:

Questions the justification of inductive reasoning.

DIKWP Components and Mathematical Representations:

a. Data (D):

  • Observations from past experiences.

b. Information (I):

  • Patterns and regularities identified.

c. Knowledge (K):

  • Generalizations and scientific laws.

d. Wisdom (W):

  • Application of inductive reasoning cautiously.

e. Purpose (P):

  • Predict future events, advance knowledge.

Analysis:

  • Completeness: Inductive reasoning may not guarantee completeness.

  • Consistency: Must recognize potential for exceptions.

Summary Table:

ComponentMathematical Representation
Data (D)Empirical observations, D={d1,d2,...,dn}D = \{ d_1, d_2, ..., d_n \}D={d1,d2,...,dn}
Information (I)I=FI(D)I = FI(D)I=FI(D) identifying patterns
Knowledge (K)K={ϕ∣ϕ is induced from I}K = \{ \phi \mid \phi \text{ is induced from } I \}K={ϕϕ is induced from I}
Wisdom (W)Cautious application, W:{D,I,K,W,P}→D∗W: \{ D, I, K, W, P \} \rightarrow D^*W:{D,I,K,W,P}D
Purpose (P)Predict and understand, P=(Input,Output)P = (\text{Input}, \text{Output})P=(Input,Output)
7. The Nature of Truth

Overview:

Examines theories of truth and their implications.

DIKWP Components and Mathematical Representations:

a. Data (D):

  • Statements and propositions.

b. Information (I):

  • Differences between statements and reality.

c. Knowledge (K):

  • Theories such as correspondence, coherence, pragmatism.

d. Wisdom (W):

  • Application in communication and understanding.

e. Purpose (P):

  • Achieve accurate understanding and convey truth.

Analysis:

  • Completeness: Must cover all aspects of truth theories.

  • Consistency: Avoid contradictions between theories.

Summary Table:

ComponentMathematical Representation
Data (D)D={Statements,Propositions}D = \{ \text{Statements}, \text{Propositions} \}D={Statements,Propositions}
Information (I)I=FI(D)I = FI(D)I=FI(D) analyzing correspondence
Knowledge (K)K={ϕ∣ϕ is a logical consequence of I}K = \{ \phi \mid \phi \text{ is a logical consequence of } I \}K={ϕϕ is a logical consequence of I}
Wisdom (W)Enhancing understanding, W:{D,I,K,W,P}→D∗W: \{ D, I, K, W, P \} \rightarrow D^*W:{D,I,K,W,P}D
Purpose (P)Convey and comprehend truth, P=(Input,Output)P = (\text{Input}, \text{Output})P=(Input,Output)
8. Realism vs. Anti-Realism

Overview:

Debates whether entities exist independently of our perceptions.

DIKWP Components and Mathematical Representations:

a. Data (D):

  • Perceptual experiences, scientific observations.

b. Information (I):

  • Differences in interpretations of data.

c. Knowledge (K):

  • Philosophical positions on reality.

d. Wisdom (W):

  • Balancing perspectives for practical purposes.

e. Purpose (P):

  • Understand the nature of reality.

Analysis:

  • Completeness: Needs to encompass all arguments.

  • Consistency: Must reconcile conflicting viewpoints.

Summary Table:

ComponentMathematical Representation
Data (D)Perceptions and observations, D={d}D = \{ d \}D={d}
Information (I)I=FI(D)I = FI(D)I=FI(D) interpreting data
Knowledge (K)K={ϕ∣ϕ is a logical consequence of I}K = \{ \phi \mid \phi \text{ is a logical consequence of } I \}K={ϕϕ is a logical consequence of I}
Wisdom (W)Practical application, W:{D,I,K,W,P}→D∗W: \{ D, I, K, W, P \} \rightarrow D^*W:{D,I,K,W,P}D
Purpose (P)Grasp reality's nature, P=(Input,Output)P = (\text{Input}, \text{Output})P=(Input,Output)
9. The Meaning of Life

Overview:

Explores purpose and significance of human existence.

DIKWP Components and Mathematical Representations:

a. Data (D):

  • Human experiences, cultural narratives.

b. Information (I):

  • Differences in life interpretations.

c. Knowledge (K):

  • Philosophical and religious theories.

d. Wisdom (W):

  • Personal and collective application.

e. Purpose (P):

  • Seek fulfillment and understanding.

Analysis:

  • Completeness: Incorporate diverse perspectives.

  • Consistency: Harmonize conflicting views.

Summary Table:

ComponentMathematical Representation
Data (D)Experiences and narratives, D={d}D = \{ d \}D={d}
Information (I)I=FI(D)I = FI(D)I=FI(D) analyzing interpretations
Knowledge (K)K={ϕ∣ϕ is a logical consequence of I}K = \{ \phi \mid \phi \text{ is a logical consequence of } I \}K={ϕϕ is a logical consequence of I}
Wisdom (W)Guiding life choices, W:{D,I,K,W,P}→D∗W: \{ D, I, K, W, P \} \rightarrow D^*W:{D,I,K,W,P}D
Purpose (P)Seek meaning, P=(Input,Output)P = (\text{Input}, \text{Output})P=(Input,Output)
10. The Role of Technology and AI

Overview:

Examines ethical implications of technological advancements.

DIKWP Components and Mathematical Representations:

a. Data (D):

  • Technological developments, AI capabilities.

b. Information (I):

  • Differences in impact assessments.

c. Knowledge (K):

  • Ethical frameworks, regulations.

d. Wisdom (W):

  • Responsible application of technology.

e. Purpose (P):

  • Enhance human well-being.

Analysis:

  • Completeness: Must consider all potential impacts.

  • Consistency: Align technological use with ethical standards.

Summary Table:

ComponentMathematical Representation
Data (D)Tech developments, D={d}D = \{ d \}D={d}
Information (I)I=FI(D)I = FI(D)I=FI(D) assessing impacts
Knowledge (K)K={ϕ∣ϕ is a logical consequence of I}K = \{ \phi \mid \phi \text{ is a logical consequence of } I \}K={ϕϕ is a logical consequence of I}
Wisdom (W)Ethical tech use, W:{D,I,K,W,P}→D∗W: \{ D, I, K, W, P \} \rightarrow D^*W:{D,I,K,W,P}D
Purpose (P)Benefit humanity, P=(Input,Output)P = (\text{Input}, \text{Output})P=(Input,Output)
11. Political and Social Justice

Overview:

Addresses fair distribution of resources and opportunities.

DIKWP Components and Mathematical Representations:

a. Data (D):

  • Socioeconomic data, legal statutes.

b. Information (I):

  • Differences highlighting inequalities.

c. Knowledge (K):

  • Theories of justice and rights.

d. Wisdom (W):

  • Policy-making considering ethics.

e. Purpose (P):

  • Achieve social equity.

Analysis:

  • Completeness: Encompass all aspects of justice.

  • Consistency: Policies must be logically coherent.

Summary Table:

ComponentMathematical Representation
Data (D)Socioeconomic data, D={d}D = \{ d \}D={d}
Information (I)I=FI(D)I = FI(D)I=FI(D) highlighting inequalities
Knowledge (K)K={ϕ∣ϕ is a logical consequence of I}K = \{ \phi \mid \phi \text{ is a logical consequence of } I \}K={ϕϕ is a logical consequence of I}
Wisdom (W)Ethical policymaking, W:{D,I,K,W,P}→D∗W: \{ D, I, K, W, P \} \rightarrow D^*W:{D,I,K,W,P}D
Purpose (P)Social justice, P=(Input,Output)P = (\text{Input}, \text{Output})P=(Input,Output)
12. Philosophy of Language

Overview:

Examines the nature of language and its influence on thought.

DIKWP Components and Mathematical Representations:

a. Data (D):

  • Linguistic expressions, communication data.

b. Information (I):

  • Differences in meanings, language structures.

c. Knowledge (K):

  • Theories of semantics, pragmatics.

d. Wisdom (W):

  • Effective communication strategies.

e. Purpose (P):

  • Enhance understanding and expression.

Analysis:

  • Completeness: Cover all aspects of language theories.

  • Consistency: Ensure coherence in linguistic models.

Summary Table:

ComponentMathematical Representation
Data (D)Linguistic data, D={d}D = \{ d \}D={d}
Information (I)I=FI(D)I = FI(D)I=FI(D) analyzing structures
Knowledge (K)K={ϕ∣ϕ is a logical consequence of I}K = \{ \phi \mid \phi \text{ is a logical consequence of } I \}K={ϕϕ is a logical consequence of I}
Wisdom (W)Improving communication, W:{D,I,K,W,P}→D∗W: \{ D, I, K, W, P \} \rightarrow D^*W:{D,I,K,W,P}D
Purpose (P)Enhance expression, P=(Input,Output)P = (\text{Input}, \text{Output})P=(Input,Output)
Mathematical Relationships Among the ProblemsOverlap Relationships

To analyze overlaps, we identify shared components or concepts across the problems.

Table of Overlapping Concepts:

ProblemOverlaps WithShared Components
Mind-Body ProblemHard Problem of ConsciousnessD, I, K related to consciousness
Free Will vs. DeterminismProblem of InductionD, I about causality
Ethical Relativism vs. Objective MoralityPolitical and Social JusticeK, W, P in ethics
Problem of SkepticismProblem of InductionChallenges in K, completeness
Nature of TruthPhilosophy of LanguageD, I, K in linguistic expressions
Role of Technology and AIPolitical and Social JusticeW, P in societal impact
Completeness and Consistency Across Problems
  • Completeness: Collectively, the problems cover a wide range of philosophical inquiries, contributing to a more complete understanding of human thought.

  • Consistency: Ensuring that knowledge across problems does not contradict requires careful reconciliation of differing theories.

Mathematical Integration:

  • Unified Knowledge Graph (K_total):

    Ktotal=⋃iKiK_{\text{total}} = \bigcup_{i} K_iKtotal=iKi

  • Consistency Criterion for K_total:

    ∄ϕ such that ϕ∈Ktotal and ¬ϕ∈Ktotal\nexists \phi \text{ such that } \phi \in K_{\text{total}} \text{ and } \neg \phi \in K_{\text{total}}ϕ such that ϕKtotal and ¬ϕKtotal

  • Completeness Criterion for K_total:

    ∀ϕ∈Ltotal,ϕ∈Ktotal∨¬ϕ∈Ktotal\forall \phi \in L_{\text{total}}, \phi \in K_{\text{total}} \lor \neg \phi \in K_{\text{total}}ϕLtotal,ϕKtotal¬ϕKtotal

Conclusion

By applying the DIKWP Semantic Mathematics framework, we have:

  • Mathematically represented each philosophical problem in terms of Data (D), Information (I), Knowledge (K), Wisdom (W), and Purpose (P).

  • Analyzed each problem for completeness and consistency, using formal logical criteria.

  • Identified overlaps and mathematical relationships among the problems, enhancing our understanding of their interconnections.

  • Provided tables to summarize components and highlight relationships.

This mathematical approach allows for a structured and precise analysis of complex philosophical issues, revealing underlying patterns and connections.

Note to Readers

This analysis aims to provide a comprehensive mathematical examination of philosophical problems using the DIKWP Semantic Mathematics framework. If further mathematical details or specific expansions are desired, please feel free to request additional information.

  1. International Standardization Committee of Networked DIKWP for Artificial Intelligence Evaluation (DIKWP-SC),World Association of Artificial Consciousness(WAC),World Conference on Artificial Consciousness(WCAC)Standardization of DIKWP Semantic Mathematics of International Test and Evaluation Standards for Artificial Intelligence based on Networked Data-Information-Knowledge-Wisdom-Purpose (DIKWP ) Model. October 2024 DOI: 10.13140/RG.2.2.26233.89445 .  https://www.researchgate.net/publication/384637381_Standardization_of_DIKWP_Semantic_Mathematics_of_International_Test_and_Evaluation_Standards_for_Artificial_Intelligence_based_on_Networked_Data-Information-Knowledge-Wisdom-Purpose_DIKWP_Model

  2. Duan, Y. (2023). The Paradox of Mathematics in AI Semantics. Proposed by Prof. Yucong Duan:" As Prof. Yucong Duan proposed the Paradox of Mathematics as that current mathematics will not reach the goal of supporting real AI development since it goes with the routine of based on abstraction of real semantics but want to reach the reality of semantics. ".



https://blog.sciencenet.cn/blog-3429562-1455554.html

上一篇:Analysis of Philosophy by DIKWP Semantic Mathematics(初学者版)
下一篇:Discovering Euler\'s Identity: As an Infant (初学者版)
收藏 IP: 140.240.44.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2025-1-3 11:35

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部