||
一般来说,研究生和本科生阶段是有本质区别的。当然,一年期的那种除外。但对于多数本科生来说,会有定式思维,以为按本科生的学习模式就能顺利完成研究生的学业。其实这里存在一个学习方式的误区,即基础误区。
没经过科研训练的本科生,会想当然地以为必须先把基础知识掌握和巩固好,才好开始切入课题的研究,否则没有把握找到突破口。于是习惯性选择的提升自我能力的方式,是把相关专业的基础书认真看反复看,最好把每本书章节后面的习题也都刷一遍。
这有其好的一面,基础稳固了,在思维逻辑、知识体系上会很严密。然而,对研究生来说,从时商的角度来考虑, 这并不一定是优化且合理的方式。
因为,基础是打不完的。以我相对熟悉的人工智能方向为例,如果要先打基础,学生应该要选择一些经典的教科书来学习,比如早期大家都看的、Duda等的《模式分类》(Pattern Classification) [1],曾经被视为红宝书的、很多人喜欢做书后习题的Bishop的《 模式识别与机器学习》(Pattern Recognition and Machine Learning)[2],再比如在亚马逊平台机器学习销售量第一的、三位斯坦福教授合作写的、统计味十足因而对机器学习有不同视角的《统计学习基础》(第二版)(The Elements of Statistical Learning, 2nd )[3],还有近年来国内绝对畅销的、知识点更全但更精炼的周志华老师的《机器学习》(因封面和样例常用西瓜,俗称西瓜书)[4]。而最近这几年特别受大家追捧的、提出生成对抗网的Ian Goodfellow与2019年图灵奖得主Yoshua Benjio等合写的《深度学习》[5]也似乎也是通向人工智能道路上的“圣经”之一。
如果觉得自己统计和数学基础好,还可以看看Devroye等写的、通篇从泛化界的角度来理解人工智能核心技术的《模式识别的概率理论》(A Probabilistic Theory of Pattern Recognition)[6]。或者读读从博弈论角度切入、不那么强调数据分布假设来诠释人工智能的,Nicolo等写的《预测,学习和博弈》(Prediction, Learning and Games)[7]。而要想了解小样本下的推理机制,也可能还得读读Daphone Koller用她不太纯正的数学表达、还略有些啰嗦写出来的上千页的《概率图模型》(Probabilistic Graphical Model)[8]。
另外,2019年5月初,徐匡迪院士在上海的院士沙龙活动中指出,人工智能不能离开数学[9]。所以,数学方面的一些经典教材也值得读一下。比如现代人工智能中常将数据看成是处在非欧几何空间(注:不精确来说,就是长宽高相互不垂直的弯曲空间),那么总得读两至三本微分几何方面的书吧。如数学大师陈省身与陈维桓合写的《微分几何讲义》[10]、J. R. 曼克勒斯写的《流形上的分析》(Analysis on Manifolds)[11]、或者陈维桓写的进阶版的、多数人可能只能看懂目录的 《微分流形初步》[12]。而算法优化也是推动人工智能前进的必要手段,那斯坦福大学大神Stephen Boyd教授写的《凸优化》(Convex Optimization)[13]也得要熟悉。还有很多值得读的书,就不再赘述了。其它学科和方向我想也差不多,经典的必然随手能列一大箩筐。
但是,如果算下研究生的在校学习时间(硕士三年/博士三年/硕博连读五年),有可能读完这些书时,多数学生快临近毕业了,还是对书本身的内容一知半解,更不用说能形成对前沿的把握了。如果本科基础不好的话,有可能书读不到半程,对科研的兴趣就已经被浇灭了。
那怎么读更适合研究生尤其是三年期甚至更短学制的研究生的定位呢?不妨换个角度,重新定义下基础。个人以为, 基础应该先优先定位在对具体研究方向的前沿把握上,而非对相对笼统的整个领域研究方向的宽泛了解。尤其是在现今研究方向越来越细分、专门化的前提下,并非全部书籍中的知识在研究生期间都会用到。
概言之,是宜以点带面,而不要以面带点。从研究生培养的角度来看,可能这样在时商上更为有效,不会浪费时间,也有利于在研究生期间学有所成。
如何找点呢?最简单的办法是从近期发表的、相关专业的学术期刊或会议论文着手。比如人工智能领域中著名期刊IEEE Transactions on Pattern Analysis and Machine Intelligence和IEEE Transactions on Neural Networks and Learning Systems,以及一些顶会如NeurIPS、 ICML、IJCAI、AAAI等。通常来说,这些期刊和会议上的文章在平均意义上是上档次、有强的创新的,能帮助大家更好了解最前沿的科研水平达到了什么程度。 值得注意的是,现在人工智能处在第三波热潮中,即使顶级会议,论文还是太多,如AAAI2019一次的投稿量都接近上万篇,一篇一篇翻也许很难找到真正想要看的材料。所以,明确选题很关键。
假定选题已经选好,那么可以通过关键词和搜索引擎从好的期刊和会议上寻找相关的论文,尤其是引用次数高的或新鲜出炉的论文更要多加关注。与书籍相比,论文的页数少得多。一篇期刊论文一般在15页以下,会议则更少,6至10页不等。而且好的文章都是浓缩的精华,句句珠玑。
从阅读摘要开始进行初筛,到觉得有内容的进行泛读和进一步的精读,一篇或多篇密切相关的文章读下来,比看书显然更省时间,且能快速了解这一领域的前沿,包括该领域同行在这一方向上已经达到的水平、在此方向上公用的评测手段,以及存在的不足。细读论文,还能知道同行在提出创新工作时是如何针对现在不足来提出改进方法的,如何行文来有理有据的支持其观点或方法的有效性的。有的时候,作者也会分享代码以增加引用率。通过运行这些代码和调试代码中的参数,读者能很快了解文章方法的优势和不足。除此以外,也比较容易针对性的以点带面,即浏览作者撰写的综述部分和提供的参考文献,从文献中形成树状搜索来获得这一领域所需的背景知识、基础、不同视角的观点方法等, 如果在阅读中,发现自己在公式和理论理解上存在障碍或偏差时,再按图索骥的去更基础的教科书或工具书上找答案。通过这种学习模式,最终形成对该研究方向的总体印象,一个点扩张成一个面甚至是一个能支撑这个点的金字塔知识结构,这个塔的底是扎实且具有一定针对性的。我记得我当年考硕士研究生的时候,也采用了这一策略。因为大学毕业后就工作了,有五年时间完全没碰过专业书,以至于数学基本都忘光了,所以为了能通过考研,只好把树状搜索的深度做深一点,当时把初等代数的内容都重新复习了一遍。
回到正题,这样形成的“基础”不仅能让学生对其研究方向有好的前瞻性,也能对方向的诸多问题快速形成深刻认识,在相对短时间内找到突破口。
另外,除了研究方向的针对性强以外,与从书籍来打扎实的基础相比,也许还有一个额外的好处,就是不太容易被教科书中的条条框框束缚。有句俗话说得好,知识越多,思考越难。人类的创新往往都是从犯错开始的,甚至可以等同于是一种犯错。如果过于遵守或相信教科书中的规范准则,其实就容易限制住自己的想象力或想象空间了。所以,我们需要或多或少地避开基础误区。
那如何能形成好的想象力呢?下回分解!
张军平
2019年10月10日写于火车上
参考文献:
1. Richard O. Duda, Peter E. Hart, David G. Stork. Pattern Classification. Wiley-Interscience, 2000.
2. Christopher Bishop. Pattern Recognition and Machine Learning. Springer, 2007.
3. Trevor Hastie, Robert Tibshirani,Jerome Friedman. The Elements of Statistical Learning: Data mining, Inference and Prediction, 2nd edition, Springer, 2009.
4. 周志华. 机器学习. 清华大学出版社,2016.
5. Ian Goodfellow, Yoshua Benjio, Aaron Courville. Deep Learning. The MIT Press, 2016
6. Luc Devroye, Laszlo Györfi, Gabor Lugosi. A Probabilistic Theory of Pattern Recognition. Springer, 1997
7. Nicolo Cesa-Bianchi, Gabor Lugosi. Prediction, Learning and Games, Cambridge University Press, 2006.
8. Daphne Koller, Nir Friedman. Probabilistic Graphical Models: Principal and Techniques, The MIT Press, 2009.
9. 徐匡迪. 中国有多少数学家投入到人工智能的基础算法研究中?上海院士沙龙,2019年5月1日
10. 陈省身,陈维桓. 微分几何讲义, 北京大学出版社,2001.
11. James R. Munkres. Analysis on Manifolds, Westview Press, 1997.
12. 陈维桓. 微分流形初步,高等教育出版社,2001.
13. Stephen Boyd, Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
延续阅读:
张军平,复旦大学计算机科学技术学院,教授、博士生导师,中国自动化学会混合智能专委会副主任。主要研究方向包括人工智能、机器学习、图像处理、生物认证及智能交通。至今发表论文近100篇,其中IEEE Transactions系列20篇,包括IEEE TPAMI, TNNLS, ToC, TITS, TAC等。学术谷歌引用近3400次,ESI高被引一篇,H指数29.
1/1 | 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ゆ繝鈧柆宥呯劦妞ゆ帒鍊归崵鈧柣搴㈠嚬閸欏啫鐣峰畷鍥ь棜閻庯絻鍔嬪Ч妤呮⒑閸︻厼鍔嬮柛銊ョ秺瀹曟劙鎮欏顔藉瘜闂侀潧鐗嗗Λ妤冪箔閹烘挶浜滈柨鏂跨仢瀹撳棛鈧鍠楅悡锟犮€侀弮鍫濋唶闁绘柨寮剁€氬ジ姊绘担鍛婂暈缂佽鍊婚埀顒佸嚬閸o綁宕洪姀鈥崇窞闁归偊鍘鹃崢鍗炩攽閳藉棗鐏犻柣蹇旂箖缁傚秹宕烽鐘碉紲濡炪倖妫侀崑鎰櫠閿旈敮鍋撶憴鍕闁靛牊鎮傞獮鍐閵忋垻鐓撻梺鍓茬厛閸犳洜妲愰悢灏佹斀闁绘ɑ鍓氶崯蹇涙煕閻樻剚娈滈柕鍡楀暣瀹曘劑顢橀崶銊р槈閾绘牠鏌涘☉鍗炲箻妞わ富鍣e娲箰鎼淬垻顦ラ梺绋匡工缂嶅﹪骞冮敓鐘参ㄩ柨鏂垮⒔閻﹀牓姊婚崒姘卞缂佸甯¢弫宥咁吋閸℃洜绠氶梺鍦帛鐢骞夐崫銉х<閺夊牄鍔屽ù顕€鏌熼瑙勬珚闁诡喗绮岃灒闁绘挸瀛╅柨顓熺節閻㈤潧鍓崇紒鑼舵鐓ら柕鍫濐槹閺呮繃銇勮箛鎾村櫢缂佽妫濋弻娑㈩敃閿濆棛顦ュ┑锛勫仒缁瑩寮诲☉銏犵疀闁靛⿵闄勯悵鏇㈡⒑閸濆嫭顥欓柛妤€鍟块~蹇曠磼濡顎撻梺鍛婄☉閿曘儵宕曢幘缁樷拺鐟滅増甯楅弫閬嶆煕閵娿儲璐℃俊鍙夊姍閹瑧鈧稒锚椤庢捇姊洪崨濠冨碍鐎殿喖澧庣槐鐐存償閵婏腹鎷洪梺璇″瀻閸涱垼鍟堟俊鐐€ら崑鍕囬鐐村仼闂佸灝顑呯欢鐐烘煙闁箑骞橀柛姗嗕簼缁绘繈鎮介棃娑楃捕闂佽绻戠换鍫濈暦濠靛棌鍫柛顐ゅ枔閸樿棄鈹戦悩缁樻锭閻庢凹鍓熼幃姗€宕f径瀣伎婵犵數濮撮崯顖炲Φ濠靛鐓欐い鏃€鍎抽崢瀵糕偓娈垮枛閻栧ジ鐛幇顓熷劅妞ゆ柨鍚嬮弳蹇涙⒒閸屾艾鈧兘鎳楅崼鏇炵疇闁规崘顕ч崥褰掓煛瀹ュ骸骞栫紒鐙€鍨堕弻銊╂偆閸屾稑顏�:1 | 婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柛娑橈攻閸欏繘鏌i幋锝嗩棄闁哄绶氶弻娑樷槈濮楀牊鏁鹃梺鍛婄懃缁绘﹢寮婚敐澶婄婵犲灚鍔栫紞妤呮⒑闁偛鑻晶顕€鏌涙繝鍌涘仴妤犵偞鍔栫换婵嬪礃椤忓棗楠勯梻浣稿暱閹碱偊顢栭崶鈺冪煋妞ゆ棃鏁崑鎾舵喆閸曨剛锛橀梺鍛婃⒐閸ㄧ敻顢氶敐澶婇唶闁哄洨鍋熼娲⒑缂佹ḿ鎳冮柟铏姍閻涱噣濮€閵堝棌鎷婚梺绋挎湰閻燂妇绮婇悧鍫涗簻妞ゆ劑鍩勫Σ鎼佹煟閿濆懎妲婚摶锝夋偠濞戞帒澧查柣蹇撳暙閳规垿鎮欓弶鎴犱桓缂佺偓婢樼粔褰掋€侀弴鐔侯浄閻庯綆鍋嗛崢顏堟⒑閸撴彃浜濈紒璇插暣瀹曨垶骞掑Δ浣哄幐闂佸憡鍔戦崝搴㈡櫠濞戙垺鐓涢柛娑卞枤閸欌偓闂佸搫鏈粙鎴﹀煡婢舵劕纭€闁绘劘灏欓鎴炵節閻㈤潧浠滈柣妤€锕幃锟犲灳閹颁焦缍庨梺鎯х箰濠€閬嶆儗濞嗘劗绠鹃柛鈩兠崝銈夋煕閹惧瓨绶叉い顏勫暣婵″爼宕卞Δ鍐ф樊婵$偑鍊х粻鎾翅缚瑜旈、姘舵晲閸℃瑧鐦堝┑顔斤供閸樿棄鈻嶅⿰鍫熲拺闁告稑锕﹂埥澶愭煕婵犲偆鐓肩€规洜澧楅幆鏃堝Ω閵壯冨箳闂佺懓鍚嬮悾顏堝礉瀹€鈧划璇差潩鏉堛劌鏋戦柟鍏兼儗閻撳牓寮繝鍥ㄧ厱闁哄洢鍔岄悘锟犳煟閹惧鈽夋い顓℃硶閹瑰嫰鎮滃鍡橈紒婵犵數鍋涢幊搴∥涘☉姘潟闁圭儤姊圭€氭岸鏌ょ喊鍗炲妞わ絽鎼—鍐Χ鎼粹€茬盎缂備胶绮敃銏ょ嵁閺嶎厼鎹舵い鎾跺枎閺嬪倿姊洪崨濠冨闁稿妫濋弫宥堢疀濞戞瑢鎷绘繛鎾村焹閸嬫挻绻涙担鍐插娴犳岸姊绘担鍛靛湱鈧稈鏅犻幃锟犳晸閻樿尙鐣洪梺姹囧灮鏋い顐㈡嚇閺屾洟宕煎┑鍥舵闂佸綊鏀卞钘夘潖濞差亝鍤掗柕鍫濇噺閻庢儳鈹戦悩顔肩仾闁挎岸鏌嶇紒妯诲磳闁糕晪绻濆畷銊╊敊閹冪闂傚倷绀侀幉锟犲垂椤栫偛纾归柡宥庡亐閸嬫挸顫濋悙顒€顏� | 婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柛娑橈攻閸欏繘鏌i幋锝嗩棄闁哄绶氶弻娑樷槈濮楀牊鏁鹃梺鍛婄懃缁绘﹢寮婚敐澶婄闁挎繂妫Λ鍕⒑閸濆嫷鍎庣紒鑸靛哺瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欓崝銈嗐亜椤撶姴鍘寸€殿喖顭烽弫鎰緞婵犲嫮鏉告俊鐐€栫敮濠囨倿閿曞倸纾块柟鍓х帛閳锋垿鏌熼懖鈺佷粶濠碘€炽偢閺屾稒绻濋崒娑樹淮閻庢鍠涢褔鍩ユ径鎰潊闁冲搫鍊瑰▍鍥⒒娴g懓顕滅紒璇插€歌灋婵炴垟鎳為崶顒€唯鐟滃繒澹曢挊澹濆綊鏁愰崨顔藉創閻忓繐绻樺娲川婵犲孩鐣锋繝鐢靛仜閿曘倝顢氶敐鍡欑瘈婵﹩鍘兼禍婊堟⒑缁嬭法绠伴柣銊у厴楠炲繑绻濆顓犲幗闁硅壈鎻徊楣冨汲閳哄懎鍑犳い蹇撳閺€浠嬫煃閵夈劌鐨洪柣顓熺懄閹便劍绻濋崘鈹夸虎閻庤娲﹂崑濠傜暦閻旂⒈鏁嗛柍褜鍓欓埢宥夊Χ閸モ晝锛濇繛杈剧悼閻℃棃宕靛▎鎾寸厽婵°倓鐒︾亸顓熴亜閺囶亞绋荤紒缁樼箓椤繈顢栭埞鐐珚闁哄本娲樺鍕醇濠靛牅鐥梻浣告惈閸婄敻宕戦幘缁樷拻闁稿本鐟ㄩ崗宀€鐥鐐靛煟鐎规洘绮岄埞鎴犫偓锝庡亝濞呮梻绱撻崒姘偓鐑芥倿閿曞倸绀夐柡宥庡幗閸庡孩銇勯弽銊ュ毈婵炲吋鐗楃换娑橆啅椤旇崵鐩庨悗鐟版啞缁诲倿鍩為幋锔藉亹闁圭粯甯╅崝澶愭⒑娴兼瑧鎮奸柛蹇旓耿楠炲啫螖閸涱厾顦ф繝銏f硾閿曪絾绔熼弴銏♀拻濞达絽鎽滅粔鐑樹繆椤愩儲纭剁紒顔肩墛閹峰懘鎼归柅娑氱憹闂備礁鎼粔鏌ュ礉鐎n剚宕查柛鈩冪⊕閻撳繘鏌涢锝囩畵闁逞屽墮閹诧紕绮嬪鍡愬亝闁告劏鏂侀幏娲煟鎼粹剝璐″┑顔炬暬钘熷璺侯儍娴滄粓鏌ㄩ弮鍥跺殭闁诲骏绠撻弻娑㈠煘閸喚浠煎銈嗘尭閵堢ǹ鐣烽崡鐐嶇喖鎳栭埞顑惧€濆缁樼瑹閳ь剙岣胯閸e綊姊洪崨濠佺繁闁搞劍澹嗛弫顕€骞掗弮鍌滐紳闂佺ǹ鏈懝楣冨焵椤掑嫷妫戠紒顔肩墛缁楃喖鍩€椤掆偓閻g兘骞囬弶澶哥炊闂侀潧锛忛崨顖氬脯闂傚倷绀佸﹢閬嶆惞鎼淬劌绐楅柟鎹愵嚙绾惧鏌熺€涙ḿ璐╃憸鐗堝笒缁€鍌炴煕韫囨艾浜圭紒瀣喘濮婄粯鎷呯粙鑳煘濠电偛妯婇崣鍐嚕婵犳碍鏅插璺猴攻椤ユ繈姊洪崷顓€鍦偓娑掓櫊瀹曟洟骞樼紒妯衡偓鍨箾閸繄浠㈤柡瀣枎閳规垿鎮欑拠褍浼愬銈庡亜缁绘帞妲愰幒鎳崇喓鎷犲顔瑰亾閹剧粯鈷戦柟顖嗗懐顔婇梺纭呮珪閹稿墽鍒掗銏犵伋闁哄倶鍎查弬鈧梻浣虹帛閸旀牞銇愰崘顏嗘/鐟滄棃寮婚敐鍛傛棃宕橀妸鎰╁灲閺岋綁鏁愰崶褍骞嬪Δ鐘靛仜濞差厼顕i崼鏇炵閹艰揪绱曢妶璺衡攽閿涘嫬浜奸柛濠冪墵楠炴劙鎳¢妶鍥╃厯闂佺懓顕崑鐔笺€呴弻銉︾厽闁逛即娼ф晶顖炴煕濞嗗繒绠插ǎ鍥э躬椤㈡稑饪伴崘銊ょ帛濠电偛鐡ㄧ划鎾剁不閺嶎厼绠栨俊銈傚亾妞ゎ偅绻堥幃娆擃敆閳ь剟顢旈敓锟� | 婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柛娑橈攻閸欏繘鏌i幋锝嗩棄闁哄绶氶弻娑樷槈濮楀牊鏁鹃梺鍛婄懃缁绘﹢寮婚敐澶婄闁挎繂妫Λ鍕⒑閸濆嫷鍎庣紒鑸靛哺瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欓崝銈嗐亜椤撶姴鍘寸€殿喖顭烽弫鎰緞婵犲嫮鏉告俊鐐€栫敮濠囨倿閿曞倸纾块柟鍓х帛閳锋垿鏌熼懖鈺佷粶濠碘€炽偢閺屾稒绻濋崒娑樹淮閻庢鍠涢褔鍩ユ径鎰潊闁冲搫鍊瑰▍鍥⒒娴g懓顕滅紒璇插€歌灋婵炴垟鎳為崶顒€唯鐟滃繒澹曢挊澹濆綊鏁愰崨顔藉創閻忓繐绻樺娲川婵犲孩鐣锋繝鐢靛仜閿曘倝顢氶敐鍡欑瘈婵﹩鍘兼禍婊堟⒑缁嬭法绠伴柣銊у厴楠炲繑绻濆顓犲幗闁硅壈鎻槐鏇熺濞戙垺鐓熼柍鈺佸暞缁€鍫㈢磼椤曞棛鍒伴摶鏍煕濞戝崬鏋撻柟閿嬫そ閺屸剝寰勭仦鎴掓勃婵犮垻鎳撳Λ婵婃闂佹寧娲栭崐褰掑磹閸偅鍙忔慨妤€妫楁禍婊呪偓瑙勬尭濡盯鍩€椤掍緡鍟忛柛鐘崇洴椤㈡俺顦归柛鈹垮劜瀵板嫰骞囬澶嬬秱闂備胶绮摫鐟滄澘鍟扮划濠囶敋閳ь剙顫忕紒妯肩懝闁逞屽墮宀h儻顦抽柣蹇旂懇濮婅櫣绮欓幐搴℃敪婵炲瓨绮犻崜娑㈠礆閹烘梻纾兼俊顖濆亹閻﹀牆鈹戦鏂や緵闁告ɑ鎮傞獮蹇撁洪鍛嫼闂佸憡绋戦敃锕傚煡婢跺娈版い蹇撴噺缂嶆垿鏌嶇紒妯诲磳鐎殿喗鎸抽幃鈺咁敃椤厼顥氶梻浣呵圭换鎰八囬娑氼洸濡わ絽鍟埛鎴犳喐閻楀牆绗氶柨娑氬枔缁辨帡鍩€椤掍焦濯撮柧蹇涒偓娑氱憹闂備礁鎼粔鏌ュ礉鐎n剚宕查柛鈩冪⊕閻撳繘鏌涢锝囩畵闁逞屽墮閹诧紕绮嬪鍡愬亝闁告劏鏂侀幏娲煟鎼粹剝璐″┑顔炬暬钘熷璺侯儍娴滄粓鏌ㄩ弮鍥跺殭闁诲骏绠撻弻娑㈠煘閸喚浠煎銈嗘尭閵堢ǹ鐣烽崡鐐嶇喖鎳栭埞顑惧€濆缁樼瑹閳ь剙岣胯閸e綊姊洪崨濠佺繁闁搞劍澹嗛弫顕€骞掗弮鍌滐紳闂佺ǹ鏈懝楣冨焵椤掑嫷妫戠紒顔肩墛缁楃喖鍩€椤掆偓閻g兘骞囬弶澶哥炊闂侀潧锛忛崨顖氬脯闂傚倷绀佸﹢閬嶆惞鎼淬劌绐楅柟鎹愵嚙绾惧鏌熺€涙ḿ璐╃憸鐗堝笒缁€鍌炴煕韫囨艾浜圭紒瀣喘濮婄粯鎷呯粙鑳煘濠电偛妯婇崣鍐嚕婵犳碍鏅插璺猴攻椤ユ繈姊洪崷顓€鍦偓娑掓櫊瀹曟洟骞樼紒妯衡偓鍨箾閸繄浠㈤柡瀣枎閳规垿鎮欑拠褍浼愬銈庡亜缁绘帞妲愰幒鎳崇喓鎷犲顔瑰亾閹剧粯鈷戦柟顖嗗懐顔婇梺纭呮珪閹稿墽鍒掗銏犵伋闁哄倶鍎查弬鈧梻浣虹帛閸旀牞銇愰崘顏嗘/鐟滄棃寮婚敐鍛傛棃宕橀妸鎰╁灲閺岋綁鏁愰崶褍骞嬪Δ鐘靛仜濞差厼顕i崼鏇炵閹艰揪绱曢妶璺衡攽閿涘嫬浜奸柛濠冪墵楠炴劙鎳¢妶鍥╃厯闂佺懓顕崑鐔笺€呴弻銉︾厽闁逛即娼ф晶顖炴煕濞嗗繒绠插ǎ鍥э躬椤㈡稑饪伴崘銊ょ帛濠电偛鐡ㄧ划鎾剁不閺嶎厼绠栨俊銈傚亾妞ゎ偅绻堥幃娆擃敆閳ь剟顢旈敓锟� | 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閹冣挃闁硅櫕鎹囬垾鏃堝礃椤忎礁浜鹃柨婵嗙凹缁ㄥジ鏌熼惂鍝ョМ闁哄矉缍侀、姗€鎮欓幖顓燁棧闂備線娼уΛ娆戞暜閹烘缍栨繝闈涱儐閺呮煡鏌涘☉鍗炲妞ゃ儲鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊╂倻閽樺锛涢梺缁樺姉閸庛倝宕戠€n喗鐓熸俊顖濆吹濠€浠嬫煃瑜滈崗娑氭濮橆剦鍤曢柟缁㈠枛椤懘鏌嶉埡浣告殲闁绘繃娲熷缁樻媴閽樺-鎾绘煥濮橆厹浜滈柨鏃囶嚙閺嬨倗绱掓潏銊︻棃鐎殿喗鎸抽幃銏ゆ惞閸︻厽顫岄梻鍌欑劍閻綊宕归挊澶呯細鐟滃秹鎮洪銏♀拻濞达絿鎳撻婊勭箾閹绘帞绠荤€规洘鍔曢埞鎴犫偓锝庝簽閻f椽鎮峰⿰鍕叆闁伙絿鍏樺畷锟犳倷閳哄倻鈧妫呴銏$カ缂佹煡绠栬棢闁跨喓濮甸埛鎴︽煠婵劕鈧洖鐡繝鐢靛仩椤曟粍淇婇崶鈺佸灊濠电姴娲ょ粻缁樸亜閺冨洤浜归柛婵囶殕缁绘稓鈧數枪瀛濆銈嗗灥濡繈骞冮敓鐘冲亜闂傗偓閹邦喚鐣炬俊鐐€栭悧妤冨枈瀹ュ绠氶柛顐犲灮绾惧ジ鏌e▎鎰噧婵炶绠撻幃鈥斥枎閹惧鍘遍棅顐㈡处濞叉牜鏁捄琛℃斀妞ゆ棁鍋愭晶娑氱磼缂佹ḿ娲撮柟铏箞閺屽洭鏁冮埀顒€鈻撻銏♀拺閻庡湱濯ḿ鎰版煕閵娿儳绉洪柛鈹惧亾濡炪倖甯掗敃锔剧矓閻㈠憡鐓曢悗锛卞啩澹曢梻鍌欑缂嶅﹪寮ㄩ崡鐑嗘富濞寸姴顑呴拑鐔兼煥濠靛棭妲归柛瀣姍閺屾稖绠涢幘鏉戞畬闂佺硶鏅涢幊妯侯潖濞差亜宸濆┑鐘插暟閸欏棝姊洪崗鍏笺仧闁搞劌鐖煎畷娲閻欌偓閸氬顭跨捄鐚村姛闁汇倐鍋撻梻鍌欒兌缁垶銆冮崨瀛樺亱闊洦绋戦崒銊╂煟閵忕姵鍟為柍閿嬪灴閺屾稑鈽夊鍫濅紣闂佽绻掗崰鏍蓟濞戞瑧绡€闁告劦浜滈埛鍫ユ⒑闁偛鑻晶顖炴煟閺冩垵澧存鐐茬箻閺佹捇鏁撻敓锟� | 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤濠€閬嶅焵椤掑倹鍤€閻庢凹鍙冨畷宕囧鐎c劋姹楅梺鍦劋閸ㄥ綊宕愰悙鐑樺仭婵犲﹤鍟扮粻鑽も偓娈垮枟婵炲﹪寮崘顔肩<婵炴垶鑹鹃獮鍫熶繆閻愵亜鈧倝宕㈡禒瀣瀭闁割煈鍋嗛々鍙夌節闂堟侗鍎愰柣鎾存礃缁绘盯宕卞Δ鍐唺缂備胶濮撮…鐑藉蓟閳ュ磭鏆嗛柍褜鍓熷畷浼村箻閼告娼熼梺鍦劋椤ㄥ懘锝為崨瀛樼厽婵☆垵娅i敍宥吤瑰⿰搴濈敖缂佽鲸鎹囧畷鎺戔枎閹烘垵甯┑鐘愁問閸o絿绮婚弽顓熸櫜闁绘劖娼欑欢鐐烘煙闁箑鍔﹂柨鏇炲€归悡鏇㈡煛閸ャ儱濡奸柣蹇曞Х缁辨帡鎮╁畷鍥ㄥ垱闂佸搫鏈惄顖炪€侀弴銏℃櫜闁糕剝鐟Σ鐗堜繆閻愵亜鈧洘顨ラ崫銉х煋闁荤喖鍋婂ḿ鏍煣韫囨挻璐¢柣顓熺懄缁绘盯宕卞Ο鍝勫Б闂佸憡鎸鹃崑鎾舵崲濞戞埃鍋撳☉娆嬬細闁活厹鍊曢湁婵犲﹤绨肩花缁樸亜閺囶亞鎮奸柟椋庡Т闇夐悗锝庡亽濞兼棃姊绘笟鈧ḿ褏鎹㈤幒鎾村弿闁割偁鍎辨儫闂佹寧妫佸銊ц姳婵犳碍鈷戦柛婵嗗閳ь剚鎮傞幃妯衡攽閸垻顦梺鍝勭Р閸斿秹宕h箛娑欏仭婵炲棗绻愰瀛樼箾閸喓鐭掗柡宀€鍠栭、娆撴偂鎼粹懣鈺佄斿Δ濠佺胺闁告鍟块悾鐑藉Ω閳哄﹥鏅i悷婊冮琚欏鑸靛姈閳锋垶鎱ㄩ悷鐗堟悙闁绘帗妞介弻娑㈠Ω閳衡偓閹查箖鏌曢崱妤€鏆炵紒缁樼箞瀹曟帡濡堕崨顕呭悪闂傚倷绀侀幖顐ゆ偖椤愶箑纾块弶鍫氭櫇娑撳秹鏌i悢绋挎珵鐟滅増甯楅弲鏌ユ煕濞戝崬鏋︾痪顓涘亾闂傚倷绀侀幉锟犳偡閵夈儙娑樷攽閸♀晜缍庨梺鎯х箰濠€杈╁閸忛棿绻嗘い鏍ㄧ箓閸氳銇勯敂鍝勫姦婵﹨娅g划娆撳礌閳ュ厖绱f繝鐢靛Л閸嬫捇姊洪鈧粔鎾倿閸偁浜滈柟鍝勭Х閸忓矂鏌涢悢鍝ュ弨闁哄瞼鍠栧畷娆撳Χ閸℃浼� |
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2025-3-18 07:38
Powered by ScienceNet.cn
Copyright © 2007-2025 中国科学报社