zhaomw64的个人博客分享 http://blog.sciencenet.cn/u/zhaomw64

博文

Volume computing for the continuous geometry in n-dimens

已有 1648 次阅读 2017-8-16 16:41 |个人分类:特殊几何体体积|系统分类:科研笔记

The volume computing for the continuous geometry in n-dimensions


     The integral calculation for the volume of the continuous geometry $R$ in n-dimensions can be defined as follows

$\mathrm{Vol}(R)=\int_{s\in R}\mathrm{1\bullet d}s$

     For the above volume computing, we have the following theorem.

     [Theorem 1] If the boundary $\partial R$ of the continuous geometry $R$ in $n$ -dimensions is known, the volume of the geometry $R$ can be calculated as follows

$\mathrm{Vol}(R)=\cfrac{1}{n}\int_{z\in\partial R}\left|\mathrm{det}[z,c_{1},c_{2},...,c_{n-1}]\right|\mathrm{d}z_{1}\mathrm{d}z_{2}...\mathrm{d}z_{n-1}$

where $\mathrm{d}z$ is the ( $n-1$ )-dimensions tangent plane on the point $z$ in the boundary $\partial R$ and can be represented as follows

$\mathrm{d}z=c_{1}\mathrm{d}z_{1}+c_{2}\mathrm{d}z_{2}+\cdots+c_{n-1}\mathrm{d}z_{n-$ 1}

where $\mathrm{rank}[z,c_{1},c_{2},\cdots,c_{n-1}]=n$ ; $\mathrm{d}z_{i}(i=1,2,\cdots,n-1)$ are the parametric variables described the ( $n-1$ )-dimensions tangent plane.


   The above theorem is a fundamental theorem for the volume computing, and should be presented and proven early. Which literature presented firstly the theorem can be found?




https://blog.sciencenet.cn/blog-3343777-1071382.html

上一篇:Shape and volume computing of observable region of LDTS
下一篇:Observable abundance of linear continuous-time systems
收藏 IP: 27.17.74.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-4-25 21:26

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部