wengewsh的个人博客分享 http://blog.sciencenet.cn/u/wengewsh

博文

Robust Estimation of Derivatives Using LowLAD

已有 577 次阅读 2019-6-15 11:17 |个人分类:机器学习|系统分类:论文交流

作者:王文武

单位:曲阜师范大学  统计学院

论文:Robust Estimation of Derivatives Using Locally Weighted Least Absolute Deviation Regression


随着机器学习与人工智能的发展,更多数据利用计算机设备等时间间隔自动收集。针对该类型数据,其变化趋势(导数估计)受到越来越多的关注,如探测气候变化、推断细胞增长率等。基于最小二乘的局部多项式回归是估计导数的标准方法,在正态分布假设下是最有效的。然而在实际应用中,非正态数据是非常常见的,包含重尾(含异常值点)、偏态或者多峰分布等。面对非正态的数据,基于最小二乘的估计不能保证估计效率,甚至得到错误的结论。

本论文结合差分序列和稳健回归,提出了局部加权最小一乘回归方法,解决了非正态分布样本中估计效率低和稳健性差的问题。首先,新的估计不同于最小二乘估计,对异常值或者重尾分布是稳健的;不同于最小一乘估计,不是依赖于密度函数在一个点的信息,而是密度函数在所有点的信息平均,因而比最小一乘估计更加稳健、效率更高。其次,不论误差分布形式如何,对称差分得到的误差序列自动保证分布函数中位数为零点,且关于零点对称。再次,基于随机差分的估计渐近等价于无限复合分位数回归估计,即一次回归等价于无穷多次分位数回归,极大地提高了计算效率。最后,通过影响函数分析指出:基于最小二乘的差分方法本质上不同于基于最小一乘估计的差分方法,这为有效地探索密度函数信息提供了新的思路。此外,把该稳健方法应用于近十年中国房价数据,挖掘到房价的增长趋势。


针对正态分布的导数学习理论:

Derivative Estimation Based on Difference Sequence via Locally Weighted Least Squares Regression




http://blog.sciencenet.cn/blog-3316039-1185106.html

上一篇:[转载]曲阜师范大学 统计学院 招生简介
下一篇:网页数据采集方法及其应用

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备14006957 )

GMT+8, 2019-7-20 06:54

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部