IEEEJAS的个人博客分享 http://blog.sciencenet.cn/u/IEEEJAS

博文

一类基于非线性PCA和深度置信网络的混合分类器及其在PM2.5浓度预测和影响因素诊断中的应用

已有 527 次阅读 2024-2-26 16:49 |系统分类:博客资讯

引用本文

 

高月, 宿翀, 李宏光. 一类基于非线性PCA和深度置信网络的混合分类器及其在PM2.5浓度预测和影响因素诊断中的应用. 自动化学报, 2018, 44(2): 318-329. doi: 10.16383/j.aas.2018.c160045

GAO Yue, SU Chong, LI Hong-Guang. A Kind of Deep Belief Networks Based on Nonlinear Features Extraction with Application to PM2.5 Concentration Prediction and Diagnosis. ACTA AUTOMATICA SINICA, 2018, 44(2): 318-329. doi: 10.16383/j.aas.2018.c160045

http://www.aas.net.cn/cn/article/doi/10.16383/j.aas.2018.c160045

 

关键词

 

深度置信网,非线性主元分析,PM2.5,信息熵 

 

摘要

 

传统的深度置信网络(Deep brief networksDBN)在建立高维数据分类模型时,往往存在网络负荷大,运算复杂度高等问题.本文首先基于非线性PCANPCA)对高维样本数据进行降维,然后以提取到的非线性特征作为DBN的网络输入,构建了一类含非线性特征提取预处理机制的DBN分类器.并从信息熵理论的角度出发,证明了所提改进DBN分类器在网络结构和算法复杂度方面的优势.通过一个PM2.5浓度预测与影响因素诊断实例,验证了所提改进DBN在一类分类和影响因素诊断问题中的应用,并与传统的分类器进行对比,显示了所提方法在建模精度及收敛速度上的优势.

 

文章导读

 

众所周知, 聚类, 支持向量机及神经元网络等常见分类方法都属于浅层分类方法, 在处理蕴藏隐含信息的样本分类问题方面还存在不足.传统的聚类方法对于高维数据来说, 数据样本较低维数据聚类时分布更为稀疏, 且每个数据间的距离都可能相当, 因此难以找到聚类中心, 从而不容易进行分类[1]; SVM属于有监督学习算法, 在处理小样本分类时有一定优势, 然而该方法过于依赖样本数据尺度, 且算法复杂度较高.并且SVM中核函数的选择往往决定了分类的精度和收敛速度, 分类结果存在不确定性[2]; 此外, 由于神经网络缺乏预训练机制, 难以深度挖掘数据中的隐含信息[3].然而深度学习方法以"无监督训练-有监督调解全局网络参数"的框架, 从理论上避免了传统神经元网络易陷入局部极值的缺点[4], 且在挖掘数据隐含信息方面具有独特优势, 尤其是在面临大规模样本数据的时候, 有更加突出的表现.常见的深度学习分为自动编码器, 卷积神经网络和深度置信网络等模型.通过查阅文献, 深度置信网络建模方法在图像处理[5-6]、软测量技术[7]、计算智能[8]等诸多领域得到成功应用, 建模精确度普遍有所提升, 上述理论的成功应用, 为构建基于高维数据非线性特征提取的深度置信网络分类器提供了重要的理论和方法支撑.值得一提的是, 面向含非线性特征的高维数据的深度置信网络建模问题, 信息量上的冗余往往给网络带来不必要的负荷.因此预先对样本数据做特征提取十分必要.

 

过程变量的特征提取的目的是找到数据之间的线性以及非线性关系表达, 而后利用提取的低维特征数据表征原有的高维数据.故数据之间的线性以及非线性关系的提取是提取特征的关键.常见的过程数据特征提取方法有主成分分析方法(PCA), 独立主元分析(ICA), 偏最小二乘法(PLS).其中, PCA利用高斯分布数据的特征, 将数据映射到正交的低维子空间上, 保留数据的特征[9]; ICA根据已经存在的统计值, 进行独立主成分正交变换[10]; PLS利用线性拟合对多变量建模, 减少变量个数[11].以上方法在数据满足高斯分布和有线性关系的情况下适用, 且效果很好, 但是, 在一类多变量数据且变量分布不定, 且存在非线性关系时, 以上方法并不奏效.所以, 本文应用一类基于输入训练神经网络表征非线性主元分析的方法, 旨在解决在多变量过程中的非线性特征提取问题, 并且实现数据降维, 为后续构建一类新的深度置信网络提供数据预处理的方法支撑.

 

空气固体细微污染物PM2.5的形成, 受众多复杂因素影响(已知影响因素超过20)[12-13].就产生过程而言, PM2.5可以由污染源直接排出(称为一次粒子), 也可以是各污染源排出的气态污染物经过冷凝或在大气中发生复杂的化学反应而生成(称为二次粒子).特别地, 在已知的众多理化因素中, 有别于湿度、风速、降雨等, O3属于驱散因子, 其浓度与PM2.5浓度之间呈指数衰减规律, 此外, 其他因素(光照等)PM2.5浓度的关系还有待探索[14].因此, PM2.5浓度预测是一类典型的数据维度高, 且数据含非线性特征的建模问题, 传统的基于浅层学习的数据驱动建模方法[15-17]在预测精度上还有待提升, 且不具备对PM2.5浓度影响因素进行诊断的功能.

 

受上述讨论启发, 针对过程变量数据维数高, 且含复杂非线性特征, 数据间隐含信息难以利用等特点, 本文提出一类基于非线性特征提取的深度置信网模型, 旨在解决高维数据非线性特征提取以及数据特征中隐含信息挖掘的问题, 并对影响模型输出的关键变量进行诊断.最后, 以一类具体的多变量建模和诊断问题讨论所提方法的应用.本文结构安排如下:1节展示了基于非线性特征提取的深度置信网络的建模过程; 2节基于信息熵理论, 对改进后的深度置信网络的建模复杂度优势进行论证; 3节以河北省某市的PM2.5监测数据为对象, 验证本文所提方法的有效性; 4节给出结论与工作展望.

 1  三层输入训练神经网络结构图

 2  深度置信网的结构

 3  NPCA-DBN模型分类与诊断结构图

 

本文提出的基于非线性特征提取的DBN模型能够有效完成含复杂非线性特征关系高维数据的预测建模诊断任务.基于信息熵理论, 证明了本文所提DBN模型相比传统DBN, 能够在不降低建模精度的同时, 达到降低网络和算法复杂度的优势, 对于深度学习理论在海量数据挖掘中的应用具有重要理论意义.将所提建模方法应用到一类PM2.5浓度预测与诊断问题中, 并与传统DBNSVMANNPLS等分类方法和含NPCA数据预处理机制的复合分类方法做了详细对比, 验证了所提方法的优势与正确性.需要说明的是, 本文采取基于数据驱动的方法对PM2.5进行浓度预测和影响因素诊断, PM2.5的形成机理上还未做过多的分析, 在未来的研究中将深入探讨PM2.5浓度变化机理.此外, 由于本文数据来源于特定城市的采样点, 因此在方法的适用性方面还要做深入的研究.下一步的工作将分为以下两部分进行: 1)理论方面, 面向深度置信网络结构本身的优化方法的研究, 研究自适应样本数据特征的网络模型结构. 2)应用方面, 尝试将所提方法应用到复杂流程工业的建模和诊断问题中.

 

作者简介

 

高月

北京化工大学信息学院硕士研究生.主要研究方向为智能决策.E-mail:18810255106@163.com

 

李宏光  

北京化工大学信息学院教授.主要研究方向为化工过程的建模、控制和优化.E-mail:lihg@mail.buct.edu.cn

 

宿翀  

北京化工大学信息学院副教授.主要研究方向为人工智能, 情感计算和智能医疗.本文通信作者.E-mail:suchong@mail.buct.edu.cn



https://blog.sciencenet.cn/blog-3291369-1423129.html

上一篇:基于极限学习机参数迁移的域适应算法
下一篇:混合选别浓密过程双速率智能切换控制
收藏 IP: 222.131.245.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-5-3 02:39

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部