.
普遍的结果要求普遍的方法。
(接上回*) Jordan property of Cremona groups. Another consequence of Theorem 1.1 is the following uniform Jordan propert of birational automorphism groups of rationally connected varieties.
评论:给出主定理的一个重要推论,联系到 Cremona 群。
推论1.3 (叙述略)
---- 主配置:X ~ rationally connected;
---- 副配置:Bir(X) ~ birational automorphism group;
---- 附加:取任意有限子群 G ⊂ Bir(X);
---- 结果1:存在正规abelian子群 H(h) ⊂ G.
---- 结果2:Bir(X) is Jordan.
.
注:H(h) 括弧中的 h 表示最大可能的 index。简记:
lP_k^d Cremona
| |
X ~> Bir(X) ~Jordan
|
H(h) ⊂ G
评论:从 X 出发得到 Bir(X),则其任意有限子群含有正规abelian子群。
---- 证明可直接从定理1.1及 [28, Th1.8] 得出。
.
特例:取 X =lP_k^d, 则 Cremona 群 Cr_d(k):=Bir(lP_k^d) 是Jordan。
---- 换句话说,取X =lP_k^d,则 Bir(X) 就成了 Cremona 群,而Bir(X) 总是Jordan。
---- Serre 曾提出, Cremona 群 能是 Jordan 的吗?Birkar 回答是。
(四位数学家的串起来了!)
.
加评:推论1.3是主定理的一个应用,显示出威力(轻易地回答了重要数学家的疑问)。
*
常识:对某个集合,经常会考虑到自身的可逆映射的全体。这是一种习惯/方法。
* * *
温习~
Wsp ~ Kw(npe)
|
MMP ==> Y --> Z
A general fibre of Y --> Z is a Fano variety X with terminal singularities.
.
Fano簇:二维
---- 光滑Fano曲面形成有界族。
---- eps-lc奇异Fano曲面形成有界族(eps>0)[1]
任意维
---- 存在光滑Fano簇构成的有界族(有理曲线几何)[22]。
---- 环形eps-lc奇异Fano簇形成有界族(组合方法)[7]。
.
主定理:EWF ~> {Xp} 有界。
.http://blog.sciencenet.cn/blog-315774-1128532.html
“(sub)配对”很可能是轴心概念/方法