sciencepluto的个人博客分享 http://blog.sciencenet.cn/u/sciencepluto

博文

关于哥巴猜想证明新思路……系列3

已有 1184 次阅读 2016-2-16 11:25 |个人分类:数论|系统分类:科研笔记

摘要: 本节用来证明 在连续的 质数连积 2*3*5*…*Pk 中抽调一个3,或者5,或者7 或者Pi(<Pk)的情况下,哥巴

          仍然成立。

 

背景与引用:

          令 S = 2*3*…*Pi-1*Pi+1*Pi+2*…*Pk        注:连积中,抽调了个Pi

          那么  S - Px  < Pk+12   中去掉Pi的倍数,剩下的皆为质数。

          因此,证明剩下的质数个数不小1就可以完成任务。

         

          同样的引用系列2中的公式,S附近小于Pk+12的质数个数Ak+1 = Ak * (Pk+m)2/(Pk2 + A*lnPk)

          其中,Ak 为 S = ....*Pk-1 时附近小于Pk2的质数个数。Pk+1 = Pk + m

          同系列2一样,容易证明Ak+1 相对于 Ak 整体是递增的

 

          下面到了一个重点:

                                         一个非Pi   倍数的数,随机平移一个 非 Pi倍数的距离,

                                          变成非Pi倍数的概率为(Pi-2)/(Pi-1)       证明略

          因此,Ak+1中筛掉Pi的倍数后剩余值为:  Ak+1*(Pi-2)/(Pi-1)   这些皆为质数

 

          因此形如  S = 2*3*…*Pi-1*Pi+1*Pi+2*…*Pk         (Pi代表质数序列) 可以拆成两个素数之和。



http://blog.sciencenet.cn/blog-3040381-956470.html

上一篇:关于哥巴猜想证明新思路……系列2
下一篇:AI的信息存储与检索思路设计

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备14006957 )

GMT+8, 2019-8-25 02:09

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部