|||
“概念问题”是根本性的问题,但也是“低级问题”,因为通常认为初学者才会犯概念性错误——那是就课本内容说的。实际上,概念性的问题谁都可能会遇到。将概念万分清晰的数学用于自然现象时,概念问题就不会那么低级了。
发这几句感想,是因为有趣的小例子。且说Penrose相信他发现了“宇宙轮回”的证据——就是微波背景辐射(CMB)里的小方差温度涨落的同心圈结构。反对他的人说,那些圈儿纯粹是随机的,甚至还能找出三角的“圈儿”呢。
另一方面,Gurzadyan等人在几年前借Kolmogorov 的一个“绝妙定理”证明了宇宙的随机性很微弱(他们发表的文章以问号为题:A weakly random universe?是设问呢,惊讶呢,还是心里没谱呢?),不超过20%——他们的结果说:
Derivingthe empirical Kolmogorov’s function in the Wilkinson Microwave Anisotropy Probe’s maps, we obtain the fraction of the random signal to be about 20 percent, i.e. the cosmological sky is a weakly random one.
然而,奥斯陆大学理论天体物理研究所的H. K. Eriksen却说作者的宣扬过分了:These are truly extraordinary claims, and in our view have no root in reality. 他认为那些文章混淆了随机性与相关性——相关性不等于非随机性,而随机的也可以是相关的:
When reading these papers, it seems clear to us that Gurzadyan et al. confuse randomness with correlation: While the CMB field is (most likely) a random field, it is not uncorrelated. Instead, the CMB field is asmooth field on scales comparable with the instrumental beam, and it has awell-defined non-flat power spectrum. Thus, the real-space correlations are strong. Of course, the instrumental noise is virtually uncorrelated, and so there are indeed two components here,one correlated and one uncorrelated. But neither is non-random.
澳大利亚数学家A.A. Kocharyan对这个批评不以为然,似乎认为批评者没有理解KSP方法。遗憾的是,他的反驳只是举了一个例子,说明貌似一样随机的两个数字序列可以有着不同的随机度,如A={3, 9, 27,81, 43, 29, 87, 61, 83, 49, 47, 41, 23, 69, 7}就比B={37, 74,11, 48, 85, 22, 59, 96, 33, 70, 7, 44, 81, 18, 55}更加随机。可随机性与相关性的问题还是模糊。
数学概念在自然面前的模糊,证明了爱因斯坦的一句名言:
As far as the laws of mathematics refer to reality, they are not certain; and as far as they are certain, they do not refer to reality.
尽管数学会在自然面前不确定,但物理学还是数学的——正如罗素说的:
Physics is mathematical not because we know so much about the physical world, but because we know so little; it is only its mathematical properties that we can discover.
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-17 17:16
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社