||
SC[1/10] indicates a S10 operation, the product of C[5^3] and the inversion operation (i). This is the definition in the textbook. In this video, SC[1/10] can operate the triangle on the face W to the face A, while the other cubies are unchanged. However, the counterclockwise permutation of the triangle is changed into the clockwise permutation. First, hold the Megaminx in the Cartesian coordinate reference system. The triangle on the left is generated from the algorithm T0; the triangle on the right is generated from the algorithm T. Second, the relationship between the two triangles is the same as the relationship between the two algorithms. The right triangle can be obtained from SC[1/10] and the left triangle. The algorithm T can also be obtained from T0 and SC[1/10]. The algorithm T0 and the algorithm T are both 15 turns. There are 120 elements in the Ih point group. That is, there are 120 operations in the Ih point group. By operating T0 with 120 elements, 120 new algorithms can be obtained. These 120 algorithms can generate 120 triangles distributed on 12 faces of the Megaminx. The meaning of other symbols: N, the counting of twisting; T, the side of twisting; RC, the angle of twisting.
https://youtu.be/2v1x3Lot4Pk?si=f2ph6oLHoq1vl-fp
Definition and Connotation
The Geometry of the Megaminx and its symmetry
First, hold a Megaminx in the Cartesian coordinate reference system. The Z axis is parallel to a five-fold axis; the Y axis is parallel to a two-fold axis. A Megaminx has 12 faces. According to symmetry, they can be divided into two categories:
1) A pentagon centered on W and its surroundings, namely W, A, B, C, D, E;
2) A pentagon centered on S and its surroundings, namely S, F, G, H, M, N.
Their simple relationship is: the face W is parallel to the face S; the face A is parallel to the face H; the face B is parallel to the face M; the face C is parallel to the face N; the face D is parallel to the face F; the face E is parallel to the face G. Each of the above letters can represent a color, and there are 12 colors in total. There are 12 center cubies in a Megaminx. These 12 center cubies are represented by the 12 letters. The Megaminx has five-fold symmetry. The C5 axis sits in the center of the pentagon. The C5 axis goes through two opposite pentagon of the Megaminx. Because a Megaminx has 12 pentagons, there must be six C5 axes overall. There are four unique symmetry operations associated with a single C5 axis, namely the C5^1, the C5^2, the C5^3, and the C5^4. The C5^5 is the same as the identity. Because there are six C5 axes, there are overall 24 C5 symmetry operations.
WA is the intersection line of the W face and the A face, which can represent the edge cubie WA. The midpoint of the intersection line WA is still denoted as WA. Therefore, WA also represents the center of the edge cubie. There are 30 edge cubies in a Megaminx. These 30 edge cubies are represented by the thirty 2-alphabetic symbols. The Megaminx also has two-fold symmetry. There are C2 axes. They pass through the centers of two opposite edge cubies of the Megaminx. The Megaminx has overall 30 edge cubies. Because one C2 axis passes through the center of two opposite edge cubies, there are 15 C2 axes. There is one unique C2 operation per axis, and therefore there are 15 C2 operations.
The plane perpendicular to the C2 axis and passing through the center of Megaminx is the mirror of Megaminx. A Megaminx has overall 15 C2 axes, therefore there are 15 mirror planes.
WAB is the intersection of three faces A, B and W. It can represent the corner cubie of Megaminx. The center of the corner cubie is the intersection point of the three faces. There are 20 corner cubies in the Megaminx. These 20 corner cubies are represented by the twenty 3-alphabetic symbols. The Megaminx also has three-fold symmetry. There are C3 axes. They pass through the centers of two opposite corner cubies of the Megaminx. The Megaminx has overall 20 corner cubies. Because one C3 axis passes through the center of two opposite corner cubies, there are 10 C3 axes overall. There are two unique symmetry operations associated with a single C3 axis, namely the C3^1 and C3^2. The C3^3 is the same as the identity. Because there are ten C3 axes, there are overall 20 C3 symmetry operations.
The Megaminx also has an inversion center in the center of the Megaminx. The improper rotational axes with the highest order are S10 axes. They are located in the same position as the C5 axes, and go through two opposite center cubies. Because one S10 passes through two opposite center cubies, and there are 12 center cubies there are 6 S10 improper axes. For each axis there are four unique symmetry operations, the S10^1, the S10^3, the S10^7, and the S10^9. Therefore, there are overall 24 operations possible. There are S6 axes that pass through the centers of two corner cubies. The S6 axes are in the same location as the C3 axes. Only the S6^1 and the S6^5 operations are unique S6 operations. Therefore there are overall 20 S6 operations. There are overall 120 operations of the point group Ih.
©Damaohudong
@Damaohudong
1/1 | 闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊椤掑鏅梺鍝勭▉閸樿偐绮堥崼鐔稿弿婵妫楅崝锕傛煥濠靛棭妲哥紒鐘烘珪娣囧﹪濡堕崪鍐╂暰闂佸搫鎷戠紞浣割潖閾忚宕夐柕濞垮劜閻濄垽姊洪悷鏉挎闁瑰嚖鎷�:2 | 濠电姷鏁告慨鐑姐€傞挊澹╋綁宕ㄩ弶鎴狅紱闂佽宕樺▔娑氭閵堝憘鏃堟晲閸涱厽娈查梺绋款儏椤戝寮婚敐鍛傜喎鈻庨幆褎顔勯柡澶嗘櫆缁诲牆顫忛搹瑙勫磯闁靛ǹ鍎查悵銏ゆ⒑閻熸澘娈╅柟鍑ゆ嫹 | 濠电姷鏁告慨鐑藉极閹间礁纾婚柣鎰惈閸ㄥ倿鏌涢锝嗙缂佺姳鍗抽弻鐔兼⒒鐎电ǹ濡介梺鍝勬噺缁诲牓寮婚妸銉㈡斀闁糕剝锚缁愭盯姊洪崨濠庢畷鐎光偓閹间礁绠栨俊銈傚亾闁宠棄顦埢宥嗘綇閵娧呯厑缂備礁鍊哥粔鎾偑娴兼潙閱囬柣鏂挎惈瀵娊姊绘担铏瑰笡婵炲弶鐗犲畷鎰板捶椤撴稑浜炬慨妯煎亾鐎氾拷 | 濠电姷鏁告慨鐑藉极閹间礁纾婚柣鎰惈閸ㄥ倿鏌涢锝嗙缂佺姳鍗抽弻鐔兼⒒鐎垫瓕绐楅梺杞扮鐎氫即寮诲☉銏犲嵆闁靛ǹ鍎辩粻濠氭⒑閸涘⿴娈曠€光偓閹间礁绠栨俊銈傚亾闁宠棄顦埢宥嗘綇閵娧呯厑缂備礁鍊哥粔鎾偑娴兼潙閱囬柣鏂挎惈瀵娊姊绘担铏瑰笡婵炲弶鐗犲畷鎰板捶椤撴稑浜炬慨妯煎亾鐎氾拷 | 闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇㈡晜閽樺缃曟繝鐢靛Т閿曘倝鎮ч崱娆忣棜閻犲洦绁撮弨浠嬫煟濡搫绾ч柟鍏煎姈濞艰鈹戠€n偀鎷洪柣鐘充航閸斿苯鈻嶉幇鐗堢厵闁告垯鍊栫€氾拷 | 闂傚倸鍊搁崐宄懊归崶褏鏆﹂柛顭戝亝閸欏繘鏌熺紒銏犳灈缂佺姾顫夐妵鍕箛閸洘顎嶉梺绋款儛娴滎亪寮诲☉銏犖ㄦい鏂垮綖濮规鎮峰⿰鍛暭閻㈩垱顨婂鏌ュ箹娴e湱鍙嗛梺缁樻礀閸婂湱鈧熬鎷� |
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2025-3-19 20:03
Powered by ScienceNet.cn
Copyright © 2007-2025 中国科学报社