全球变化- 杨学祥工作室分享 http://blog.sciencenet.cn/u/杨学祥 吉林大学地球探测科学与技术学院退休教授,从事全球变化研究。

博文

气候变冷高峰:多种周期指向2020年

已有 5322 次阅读 2012-9-6 20:48 |个人分类:科技点评|系统分类:观点评述|关键词:变冷高峰,拉马德雷,太阳黑子,地球自转,潮汐| 地球自转, 太阳黑子, 潮汐, 拉马德雷, 变冷高峰

                     气候变冷高峰:多种周期指向2020

                                 杨学祥,杨冬红

 

2004年我在多家网站指出,正当全球变暖的证据铺天盖地而来之际,地球变冷的信息悄然而至。透过表面现象看本质,地球气候变化的动力机制已发生重大的变化,预示一场类似20世纪50-70年代的变冷过程正在到来[1-3]

 

20041226印尼苏门答腊9.1级地震和海啸发生后,低温暴雪频繁袭击北半球,持续变暖的观点遭到质疑,周期变冷的观点受到关注。归纳网上关于气候变冷观点的评述,引起全球气候周期变化的因素有以下几种,多种因素的60年周期将变冷高峰指向2020年。

 

一、地球轨道效应60年周期:

 

据任振球的研究,木星、土星、天王星和海王星使地球冬至时的公转半径发生相当稳定的准周期变化,与全球尤其北半球气温变化的间隔60年振动相一致。在20世纪初的低温期和60~70年代相对偏冷期,当时(19011960年)地球冬至时的公转半径分别延长了94(相当于日地距离的0.6%)57万公里;在30-40年代和80年代后的暖期,地球冬至时的公转半径(19402000年)分别缩短了7644万公里。2000-2020年地球冬至时的公转半径由极小值变为极大值,他推测2020年前后全球气候将进入相对冷期[145]

 

二、气温变化60年周期:

 

韩延本分析了美国宇航局公布的起自19世纪中期的全球及南北半球的温度异常变化资料,得到它们存在约60年的准周期性波动的初步结果。该周期是它们的中周期波动的主要周期分量之一,它对调制温度的总体变化趋势可起到重要作用。分析表明,该周期分量是时变的,周期长度在19世纪略超过60年,之后缓慢变短,到20世纪后期月在55年至60年间。所谓人类活动造成的温室效应的加剧似乎并未有打乱这一周其分量的存在[16]

 

三、太阳黑子活动异常低值:

 

网易探索917日报道 据美国《科学》杂志网站915(北京时间)报道,科学家研究发现,太阳黑子的磁场在过去20年内呈稳步下降趋势。按目前的趋势发展下去,2016年,太阳表面的黑子将变得了无踪迹,并将维持至少数十年。此一现象上次发生时,正是17世纪地球的长时间低温期[7]

美国科研人员预测,太阳将进入不寻常且时间较长的“超级安静模式”,大约从2020年开始,太阳黑子活动或许会消失几年甚至几十年。这些科研人员在美国天文学会太阳物理学分会年会上发表3份研究报告说,人们熟悉的太阳黑子活动或许将进入“冬眠”,这种情况自17世纪以来从未出现[8]

 

四、潮汐周期

 

澳大利亚气象学家E. 布赖恩特编著的《气候过程和气候变化》中,有关气候现象循环的记录75[9]。计算表明,潮汐有1.03031.11452.05382.06062.20142.20872.228918.6 a的基本周期[10]。由此衍生的周期有3.13.344.14.95.55.5799.29.39.59.99.98101111.13718.6、、19.962222.32729.95303344545555.755.8607790110179.6182.4186200205220 a75项气候现象循环的记录与潮汐周期相同的有66项,占88%,表明潮汐是影响气候现象循环的主要因素。

1  60年准周期和潮汐周期

         合成周期名称

周期年数

倍数

倍数周期

近点月与月亮视赤纬角合成周期

交点月与月亮视赤纬角合成周期

近点月与交点月合成周期

月亮视赤纬角与日月大潮合成周期

交点月与朔望月合成周期

近点月与朔望月合成周期

日食和月食的沙罗周期

2.0538年与2.2014年合成值的2

2.0538年与2.2087年合成值的2

2.0606年与2.2014年合成值的2

月亮赤纬角周期

潮汐合成周期

太阳黑子周期

1.0303a

1.0176a

2.0538a

1.1043a

2.2014a

2.2289a

18a

9a

9a

9a

18.6a

11a

11a

50

50

25

50

25

25

3

6

6

6

3

5

5

51.515a

50.88a

51.345a

55.215a

55.035a

55.723a

54a

54a

54a

54a

55.8a

55a

55a

 

五、地球自转周期60年周期

 

根据罗时芳等人(1974)和任振球等人(1990)的研究,地球自转周期11.169年对应11.2年太阳黑子周期、12.15年对应12.01年木星相似会合周期、18.6年对应月亮赤纬角的变化周期、19.855年对应19.858年木星、土星会合周期、22.337年对应22.2年太阳磁周、29.783年对应29.46年土星公转恒星周期、59.555年周期对应5960年木星、土星、水星相似会合周期,振幅分别为0.1620.1410.5210.1890.4340.5211.239毫秒,显示地球自转与行星潮汐的对应关系(见表1[11, 12]

此种解释的矛盾是,与土星相比,木星质量大,距离地球近,产生的地球自转振幅却仅为土星的四分之一。如果加上潮汐的11.13718.619.9622.329.9459.88年周期,就有很好的对应性和可比性。地球自转周期18.629.78359.555年的振幅是最大的,月亮赤纬角在18.6年内由18.6度变为28.6度,完成一个周期循环。在月亮赤纬角为最大值28.6度时期,地球的平均扁率变小,地球自转加快;在月亮赤纬角为最小值18.6度时期,地球的平均扁率变大,地球自转变慢。潮汐的11.13718.619.9622.329.9459.88年周期使潮汐影响地球自转的解释更加合理。

2  地球自转变化的长周期[11, 12]

地球自转

周期(年)

  

(毫秒)

           对应天文周期(年)

 

178.698

89.348

59.555

 

 

45.0

 

34.503

 

29.783

 

22.337

 

 

19.855

 

 

18.6

12.15

11.169

 

 

9.2

0.385

0.803

1.239

 

 

0.304

 

0.215

 

0.521

 

0.434

 

 

0.189

 

 

0.521

0.141

0.162

 

 

0.184

198.72,太阳黑子长周期;九大行星会聚周期

89.757,太阳黑子长周期;89.36,九星会聚之半

57.119,太阳黑子长周期;59.573,木星、土星会合周期;5960,木星、土星、水星相似会合周期;59.88,潮汐混合周期*

45.39,土星、天王星会合周期;44.548,朔望周期与近点月周期的合成周期4*

35.88,土星、海王星会合周期;37.22,月亮交点进动双周;

33.4,近点月与日月大潮合成周期*

29.46,土星公转周期;30.02,土星相似会合周期;29.95,潮汐合成周期*

22.2,太阳磁周;22.014,朔望周期与交点月周期的合成周期*22.274,朔望周期与近点月周期的合成周期*22.0879,月亮视赤纬角月变化周期与朔望周期的合成周期*

19.858,木星、土星会合周期;19.99,水星相似会合周期;19.96,交点月周期、近点月周期、朔望周期两两合成周期(2.05332.20142.2087)的会合周期*

18.61,月亮交点进动周期,月亮赤纬角变化周期

9.9-13.035,太阳黑子周期;12.01,木星相似会合周期

11.2,太阳黑子周期;11.007,朔望周期与月亮交点周期的合成周期*11.137,朔望周期与近点月周期的合成周期*11.0439,月亮视赤纬角月变化周期与朔望周期的合成周期*

8.9-9.4,太阳黑子周期;9.2多项潮汐合成周期*

注:带*号者为杨冬红计算得出。

六、拉马德雷60周期

 

20093月,凯尔·斯旺森和安纳斯塔西奥斯·托尼斯就指出,在21世纪气温总体上升趋势中,会交替出现阶段性的30年变暖和30年变冷。全球气候在2001年至2002年间就已经进入了这样一个阶段[13]。丹·伊斯特布鲁克教授认为,“太平洋十年涛动”周期是影响全球气候冷暖的决定性因素。这是一种冷暖交替的周期,在30年的暖周期后,现在它已经开始变冷了。地球在1945年至1977年的变冷就与太平洋上一次的冷周期时间一致[14-16]

近十年研究发现,厄尔尼诺(El Nino)和拉尼娜(La Nina)的发生与更大时间尺度的“太平洋十年涛动”(Pacific Decadal Oscillation,缩写为PDO)密切相关,周期为50-70[17-18]PDO是近年来揭示的一种年代际时间尺度上的气候变率强信号,它是叠加在长期气候趋势变化上的一种扰动,直接造成太平洋及其周边地区气候的年代际变化,影响厄尔尼诺—南方涛动(El Nino South Oscillation,缩写为ENSO)事件的频率和强度。1976-1977年北太平洋出现了一次显著的气候年代际突变现象,直到上世纪八十年代末,人们才开始对引起这种现象原因予以关注[19-20]

PDO是一种高空气压流,其“暖位相”和“冷位相”两种形式分别交替在太平洋上空出现,每种现象持续近二十年至三十年。近一个世纪以来,PDO已经出现两个完整的周期。第一周期的“冷位相”发生在18901924年,而“暖位相”发生在19251945年;第二周期的“冷位相”发生在19461976年,而“暖位相”发生在19771999年。2000年进入第三周期的“冷位相”。气候的温暖期对应暖位相,寒冷期对应冷位相[22]

早在2003年,国家气候中心(NCC)研究员赵振国就提出了“30年气温周期理论”。依据这一理论,在未来5年到10年间,受海温、副热带高压、厄尔尼诺现象和拉尼娜现象等气候因素的共同影响,我国气候将发生“周期性”转折。从一个30年的“暖周期”进入另一个30年的“冷周期”,这主要表现在冬季温度逐渐下降,而我国持续“暖冬”现象也可能得到转变。此外,气候周期的转折也会带来降水带的北移,北方雨水少而南方雨水多的现象将会有360度变化,即北方降水增多,南方降水减少。《北京娱乐信报》2003322日以《我国气候将发生大转折 北涝南旱将取代南涝北旱》为题发表,并为各大网络广泛转载[2223]

全球气候变化是由太阳活动、潮汐变化、地球轨道变化、地球自转、拉马德雷现象等多种因素造成的,温室效应不是唯一因素。众多因素将气候变冷高峰指向2020年,这不会是数字的巧合,必有内在规律的必然联系。

关注气候变化60年周期和2020年变冷高峰。

 

 

参考文献

 

1.       杨学祥. 地球已开始进入变冷周期. (中国经济史论坛于2004-4-6 2:48:49)http://www.guoxue.com/economics/ReadNews.asp?NewsID=2951&BigClassID=22&SmallClassID=94&SpecialID=24

2.       杨学祥. 地球已开始进入变冷周期. 2004-3-18上海环境热线.绿色论坛。http://www.envir.online.sh.cn/forum/20042732.htm

3.       杨学祥. 地球已开始进入变冷周期 (2004-3-23)光明网.光明观察. http://www.gmw.com.cn/03pindao/guancha/2004-3/23/1122001.htm

4.       任振球. 当代气候变暖若干问题商榷. : 丁一汇主编,中国的气候变化与气候影响研究. 北京: 气象出版社.1997.43-48.

5.       王晟,仲永,张晓露。都说全球变暖,冬天咋更冷了呢?新华报业网-南京晨报。2012-02-02 10:57:25 http://news.xhby.net/system/2012/02/02/012622455.shtml

6.       韩延本, 韩永刚, 马利华等. 全球温度异常及地球自转变化中的约60年周期. 见:中国地球物理2003. 中国地球物理学会编. 南京:南京师范大学出版社, 2003. 362

7.       张梦然。美研究称2016年太阳黑子将消失 并持续数十年。2010-09-17 09:47:39 来源: 网易探索。http://discover.news.163.com/10/0917/09/6GPACKBB000125LI.html

8.       Richard A. Kerr. End of the Sunspot Cycle? 2011-6-14, Follow ScienceNOW on Facebook and Twitter. http://news.sciencemag.org/sciencenow/2011/06/end-of-the-sunspot-cycle.html

9.       E. 布赖恩特. 气候过程和气候变化[M]. 刘东生, 等译. 北京: 科学出版社, 2004: 11.

10.   杨冬红, 杨学祥. 澳大利亚夏季大雪与南极海冰三个气候开关.地球物理学进展.2007,225):1680-1685.

11.   任振球. 全球变化[M]. 北京: 科学出版社. 1990. 60 – 88. REN Zhen-qiu. Global Change [M]. Beijing: Scientific Publishing House, 1990, 60-88.

12.   罗时芳, 梁世光, 叶叔华, . 地球自转转率变化的周期分析[J]. 天文学报, 1974, 15(1): 79-84.

13.   Swanson, K. L., and A. A. Tsonis. Has the climate recently shifted? Geophys. Res. Lett., 2009,36: 6711

14.   Easterbrook, D.J., The next 25 years: global warming or global cooling? Geologic and oceanographic evidence for cyclical climatic oscillations: Geological Society of America, Abstracts with Program, 2001, 33253.

15.   Easterbrook, D.J., 2008, Correlation of climatic and solar variations over the past 500 years and predicting global climate changes from recurring climate cycles: International Geological Congress, Oslo, Norway.

16.   Easterbrook, Don J. Glacier fluctuations, global climate change, and ocean temperature changes, International Conference on Climate Change NY, 2009.

17.   杨修群, 朱益民, , . 太平洋年代际震荡的研究进展[J]. 大气科学, 2004, 28(6): 979-992.

18.   吕俊梅, 琚建华, 张庆云, . 太平洋年代际振荡冷、暖背景下ENSO循环的特征[J]. 气候与环境研究, 2005, 10(2): 238-249.

19.   Zhang Y, Wallace J M, Battisti D S. ENSO-like interdecadal variability: 1900-93[J]. J. Climate, 1997, 10:1004-1020.

20.   Mantua N J, Hare S R, Zhang Y, et al. A Pacific ingterdecadal climate oscillation with impacts on salmon production [J]. Bull. Amer. Meteor. Soc., 1997, 78: 1069-1079.

21.   杨冬红,杨德彬,杨学祥。地震和潮汐对气候波动变化的影响。地球物理学报。2011544):926-934.

22.   我国气候将发生大转折 北涝南旱将取代南涝北旱。《北京娱乐信报》2003322日。http://www.china.com.cn/chinese/2003/Mar/298051.htm

23.   孙林海,赵振国。我国暖冬气候及其成因分析。气象。2004 3012):57-60

 

 



http://blog.sciencenet.cn/blog-2277-609875.html

上一篇:厄尔尼诺现象疲软可能耽搁巴西大豆播种:预料之中
下一篇:2020年气候变冷高峰:潮汐和地震的制冷作用

3 曹建军 钟炳 sldqc

该博文允许注册用户评论 请点击登录 评论 (7 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2020-3-30 00:39

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部